BACKGROUNDSpecific profile of microRNAs (miRNAs, miR) expressed in psoriasis has been identified in the past few years, while the studies on roles and molecular mechanisms of these miRNAs are still on the way. In our previous study, four specific miRNAs (miR-31, miR-203, hsa-miR-99a and miR-125b) were found to be specifically altered in psoriatic lesions.We therefore conducted a systematic literature review in this study to reveal the role of these miRNAs in the pathogenesis of psoriasis in order to inform future research.METHODSThe related articles indexed in PubMed (MEDLINE) database were searched and analyzed. We identified eligible studies related to the mechanism research of miR-31, miR-203, hsa-miR-99a and miR-125b in psoriasis or psoriatic lesional skin from inception up to July 2016. The experts in the field of miRNAs and Psoriasis were involved in analysis process.RESULTBoth miR-31 and miR-203 are dramatically upregulated in psoriatic lesions. The former plays the pro-proliferative, pro-differentiative and pro-inflammatory roles and the latter holds the potentials for anti-proliferation, pro-inflammation and pro-differentiation in psoriatic keratinocytes. Conversely, both hsa-miR-99a and miR-125b are significantly downregulated in psoriatic skin. These two miRNAs are able to inhibit proliferation while promote differentiation of psoriatic keratinocytes, and miR-125b can also suppress inflammation in psoriatic lesions. By analyzing the contexts related to these miRNAs, we found that each of them does not act alone but rather work in concert with other miRNAs. The imbalance between miR-31/miR-203and hsa-miR-99a/miR-125b may contribute to the intense proliferation and abnormal differentiation of psoriatic keratinocytes, which is a characteristic of pathogenesis of psoriasis.CONCLUSIONAn imbalanced miRNAs axis was for the first time outlined. Apparently, upregulation of miR-31/miR-203 and downregulation of hsa-miR-99a/miR-125b work together in concert to facilitate the development of psoriasis pathogenesis. Further work in this field holds the potentials to open a new way to study psoriasis.
Besides genetic alterations, the cellular environment also determines disease onset and progression. When different cell types contribute to disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes of psoriatic skin, and we show that expression in keratinocytes is induced by limited glucose availability and enables increased survival under limiting glucose conditions by increasing glutamine metabolism. In addition, miR-31 expression results in not only secretion of specific metabolites (aspartate and glutamate) but also secretion of immunomodulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibitors of miR31-induced metabolic rewiring and metabolic crosstalk with immune cells alleviate psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
Abstract. Bushen-Qiangdu-Zhilv (BQZ) decoction is a traditional Chinese medicinal compound widely used for treating ankylosing spondylitis (AS). However, the mechanisms underlying effects of BQZ remain largely unknown. Osteoblast differentiation of fibroblasts plays an important role in heterotopic ossification (HO) of AS, and connexin 43 (Cx43) is crucially involved in the osteoblast differentiation of fibroblasts. The aim of the present study was to evaluate the effects of BQZ on the osteogenic differentiation of fibroblasts by regulating Cx43. Rat fibroblasts were treated with freeze-dried powder of BQZ, in the presence or absence of recombinant human bone morphogenetic protein-2 (rhBMP-2). MTS assays were performed to examine the inhibitory effects of BQZ on fibroblast proliferation. Western blot assays were conducted to detect the protein expression of core-binding factor alpha 1 (Cbfα1), Cx43 and phosphorylated Cx43 (pCx43). BQZ appeared to inhibit fibroblast proliferation in a dose-dependent manner. Furthermore, the expression of Cbfα1 and Cx43/pCx43 was significantly suppressed by BQZ, with or without rhBMP-2 stimulation. Therefore, the present results indicate that BQZ may exert an anti-AS effect by suppressing the osteogenic differentiation of fibroblasts via Cx43 regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.