Aqueous rechargeable zinc-metal batteries are a promising candidate for next-generation energy storage devices due to their intrinsic high capacity, low cost, and high safety. However, uncontrollable dendrite formation is a serious problem, resulting in limited lifespan and poor coulombic efficiency of zinc-metal anodes. To address these issues, a 3D porous hollow fiber scaffold with well-dispersed TiO 2 , SiO 2 , and carbon is used as superzincophilic host materials for zinc anodes. The amorphous TiO 2 and SiO 2 allow for controllable nucleation and deposition of metal Zn inside the porous hollow fiber even at ultrahigh current densities. Furthermore, the as-fabricated interconnected conductive hollow SiO 2 and TiO 2 fiber (HSTF) possess high porosity, high conductivity, and fast ion transport. Meanwhile, the HSTF exhibits remarkable mechanical strength to sustain massive Zn loading during repeated cycles of plating/stripping. The HSTF with interconnected conductive network can build a uniform electric field, redistributing the Zn 2+ ion flux and resulting in smooth and stable Zn deposition. As a result, in symmetrical cells, the Zn@HSTF electrode delivers a long cycle life of over 2000 cycles at 20 mA cm −2 with low overpotential (≈160 mV). The excellent cycling lifespan and low polarization are also realized in Zn@HSTF//MnO 2 full cells.
Silver nanowire (Ag NW) has been considered as the promising building block for the fabrication of transparent electromagnetic interference (EMI) shielding films. However, the practical application of Ag NW-based EMI shielding films has been restricted due to the unsatisfactory stability of Ag NW. Herein, we proposed a reduced graphene oxide (rGO) decorated Ag NW film, which realizes a seamless integration of optical transparency, highly efficient EMI shielding, reliable durability and stability. The Ag NW constructs a highly transparent and conductive network, and the rGO provides additional conductive path, showing a superior EMI shielding effectiveness (SE) of 33.62 dB at transmittance of 81.9%. In addition, the top rGO layer enables the hybrid film with reliable durability and chemical stability, which can maintain 96% and 90% EMI SE after 1000 times bending cycles at radius of 2 mm and exposure in air for 80 days. Furthermore, the rGO/Ag NW films also possess fast thermal response and heating stability, making them highly applicable in wearable devices. The synergy of Ag NW and rGO grants the hybrid EMI shielding film multiple desired functions and meanwhile overcomes the shortcomings of Ag NW. This work provides a reference for preparing multifunctional integrated transparent EMI shielding film.
Microstructure has a critical influence on the mechanical and functional properties. For thermoelectric materials, deep understanding of the relationship of microstructure and thermoelectric properties will enable the rational optimization of the ZT value and efficiency. Herein, taking AgSbSe2 as an example, we first report a different role of alkaline-earth metal ions (Mg(2+) and Ba(2+)) doping in the microstructure and thermoelectric properties of p-type AgSbSe2. For Mg doping, it monotonously increases the carrier concentration and then reduces the electrical resistivity, leading to a substantially enhanced power factor in comparison to those of other dopant elements (Bi(3+), Pb(2+), Zn(2+), Na(+), and Cd(2+)) in the AgSbSe2 system. Meanwhile, the lattice thermal conductivity is gradually suppressed by point defects scattering. In contrast, the electrical resistivity first decreases and then slightly rises with the increased Ba-doping concentrations due to the presence of BaSe3 nanoprecipitates, exhibiting a different variation tendency compared with the corresponding Mg-doped samples. More significantly, the total thermal conductivity is obviously reduced with the increased Ba-doping concentrations partially because of the strong scattering of medium and long wavelength phonons via the nanoprecipitates, consistent with the theoretical calculation and analysis. Collectively, ZT value ∼1 at 673 K and calculated leg efficiency ∼8.5% with Tc = 300 K and Th = 673 K are obtained for both AgSb0.98Mg0.02Se2 and AgSb0.98Ba0.02Se2 samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.