Organometal halide perovskites exhibit large bulk crystal domain sizes, rare traps, excellent mobilities and carriers that are free at room temperature-properties that support their excellent performance in charge-separating devices. In devices that rely on the forward injection of electrons and holes, such as light-emitting diodes (LEDs), excellent mobilities contribute to the efficient capture of non-equilibrium charge carriers by rare non-radiative centres. Moreover, the lack of bound excitons weakens the competition of desired radiative (over undesired non-radiative) recombination. Here we report a perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture. The materials function as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiative recombination. We use the new material to build devices that exhibit an external quantum efficiency (EQE) of 8.8% and a radiance of 80 W sr m. These represent the brightest and most efficient solution-processed near-infrared LEDs to date.
Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).
A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.
Perovskite light-emitting diodes (PeLEDs) have shown excellent performance in the green and near-infrared spectral regions, with high color purity, efficiency, and brightness. In order to shift the emission wavelength to the blue, compositional engineering (anion mixing) and quantum-confinement engineering (reduced-dimensionality) have been employed. Unfortunately, LED emission profiles shift with increasing driving voltages due to either phase separation or the coexistence of multiple crystal domains. Here we report color-stable sky-blue PeLEDs achieved by enhancing the phase monodispersity of quasi-2D perovskite thin films. We selected cation combinations that modulate the crystallization and layer thickness distribution of the domains. The perovskite films show a record photoluminescence quantum yield of 88% at 477 nm. The corresponding PeLEDs exhibit stable sky-blue emission under high operation voltages. A maximum luminance of 2480 cd m−2 at 490 nm is achieved, fully one order of magnitude higher than the previous record for quasi-2D blue PeLEDs.
Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low excitation regimes, limit their efficiency for light emission. Consequently, perovskite light emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct energy transfer into the lowest-bandgap
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.