Organic field-effect transistors (OFETs) that operated with good electrical stability were prepared by synthesizing fluorinated polyimide (PI) gate dielectrics based on 6FDA− PDA−PDA PI and 6FDA−CF3Bz−PDA PI. 6FDA−PDA−PDA PI and 6FDA−CF3Bz−PDA PI contain 6 and 18 fluorine atoms per repeat unit, respectively. These fluorinated polymers provided smooth surface topographies and surface energies that decreased as the number of fluorine atoms in the polymer backbone increased. These properties led to a better crystalline morphology in the semiconductor film grown over their surfaces. The number of fluorine atoms in the PI backbone increased, the field-effect mobility improved, and the threshold voltage shifted toward positive values (from −0.38 to +2.21 V) in the OFETs with pentacene and triethylsilylethynyl anthradithiophene. In addition, the highly fluorinated polyimide dielectric showed negligible hysteresis and a notable gate bias stability under both a N 2 environment and ambient air.
We report six asymmetric alkylated anthracene-based molecules with different alkyl side chain lengths for use in organic field-effect transistors (OFETs). Alkyl side chains can potentially improve the solubility and processability of anthracene derivatives. The crystallinity and charge mobility of the anthracene derivatives may be improved by optimizing the side chain length. The highest field-effect mobility of the devices prepared here was 0.55 cm(2)/(V s), for 2-(p-pentylphenylethynyl)anthracene (PPEA). The moderate side chain length appeared to be optimal for promoting self-organization among asymmetric anthracene derivatives in OFETs, and was certainly better than the short or long alkyl side chain lengths, as confirmed by X-ray diffraction measurements.
A novel fluorinated organic–inorganic (O–I) hybrid sol—gel based material, named FAGPTi, is successfully synthesized and applied as a gate dielectric in flexible organic thin‐film transistors (OTFTs). The previously reported three‐arm‐shaped alkoxysilane‐functionalized amphiphilic polymer yields a stable O–I hybrid material consisting of uniformly dispersed nanoparticles in the sol‐state. Here, a fluorinated precursor is introduced into the system, making it possible to realize more stable spherical composites. This results in long‐term colloidal stability (≈1.5 years) because composite growth is strongly inhibited by the presence of fluorine groups with intrinsically strong repulsive forces. Additionally, the FAGPTi film is easily deposited via thermally annealed sol–gel reactions; the films can be successfully fabricated through the printing method, and exhibit excellent flexibility and enhanced insulating properties compared to existing materials. OTFTs with FAGPTi layers show highly stable driving characteristics under severe bending conditions (1.9% strain). Integrated logic devices are also successfully operated with these OTFTs. Additionally, it can facilely be applied to amorphous indium‐gallium‐zinc‐oxide (a‐IGZO) TFT devices other than OTFT. Therefore, this synthetic strategy can provide useful insights into the production of functional O–I hybrid materials, enabling the efficient fabrication of electronic materials and devices exhibiting these properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.