Clear structure-performance relationships are helpful for the design of efficient catalysts and the understanding of reaction mechanisms. Electrocatalytic nitrate reduction reaction (NO3RR) offers a sustainable route to ammonia (NH3) synthesis...
It still remains challenging to simultaneously achieve high stability, selectivity, and activity in CO2 reduction. Herein, a dual chainmail‐bearing nickel‐based catalyst (Ni@NC@NCNT) was fabricated via a solvothermal‐evaporation‐calcination approach. In situ encapsulated N‐doped carbon layers (NCs) and nanotubes (NCNTs) gave a dual protection to the metallic core. The confined space well maintained the local alkaline pH value and suppressed hydrogen evolution. Large surface area and abundant pyridinic N and Niδ+ sites ensured high CO2 adsorption capacity and strength. Benefitting from these, it delivered a CO faradaic efficiency of 94.1 % and current density of 48.0 mA cm−2 at −0.75 and −1.10 V, respectively. Moreover, the performance remained unchanged after continuous electrolysis for 43 h, far exceeding Ni@NC with single chainmail, Ni@NC/NCNT with Ni@NC sitting on the walls of NCNT, bare NCNT and most state‐of‐the‐art catalysts, demonstrating structural superiority of Ni@NC@NCNT. This work sheds light on designing unique architectures to improve electrochemical performances.
The sluggish kinetics of oxygen evolution reaction (OER) has become a hindrance for the development of clean and sustainable energy technology and calls for highly efficient electrocatalysts. Recently, heteroatom doping...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.