Obtaining PM2.5 data for the entirety of a research region underlies the study of the relationship between PM2.5 and human spatiotemporal activity. A professional sampler with a filter membrane is used to measure accurate values of PM2.5 at single points in space. However, there are numerous PM2.5 sampling and monitoring facilities that rely on data from only representative points, and which cannot measure the data for the whole region of research interest. This provides the motivation for researching the methods of estimation of particulate matter in areas having fewer monitors at a special scale, an approach now attracting considerable academic interest. The aim of this study is to (1) reclassify and particularize the most frequently used approaches for estimating the PM2.5 concentrations covering an entire research region; (2) list improvements to and integrations of traditional methods and their applications; and (3) compare existing approaches to PM2.5 estimation on the basis of accuracy and applicability.
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Footmounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.
Accurate and timely estimations of large-scale population distributions are a valuable input for social geography and economic research and for policy-making. The most popular large-scale method to calculate such estimations uses mobile phone data. We propose a novel method, firstly based upon using a kernel density estimation (KDE) to estimate dynamic mobile phone users’ distributions at a two-hourly scale temporal resolution. Secondly, a convolutional long short-term memory (ConvLSTM) model was used in our study to predict mobile phone users’ spatial and temporal distributions for the first time at such a fine-grained temporal resolution. The evaluation results show that the predicted people’s mobility derived from the mobile phone users’ density correlates much better with the actual density, both temporally and spatially, as compared to traditional methods such as time-series prediction, autoregressive moving average model (ARMA), and LSTM.
Estimating and mapping population distributions dynamically at a city-wide spatial scale, including those covering suburban areas, has profound, practical, applications such as urban and transportation planning, public safety warning, disaster impact assessment and epidemiological modelling, which benefits governments, merchants and citizens. More recently, call detail record (CDR) of mobile phone data has been used to estimate human population distributions. However, there is a key challenge that the accuracy of such a method is difficult to validate because there is no ground truth data for the dynamic population density distribution in time scales such as hourly. In this study, we present a simple and accurate method to generate more finely grained temporal-spatial population density distributions based upon CDR data. We designed an experiment to test our method based upon the use of a deep convolutional generative adversarial network (DCGAN). In this experiment, the highest spatial resolution of every grid cell is 125125 square metre, while the temporal resolution can vary from minutes to hours with varying accuracy. To demonstrate our method, we present an application of how to map the estimated population density distribution dynamically for CDR big data from Beijing, choosing a half hour as the temporal resolution. Finally, in order to cross-check previous studies that claim the population distribution at nighttime (from 8 p.m. to 8 a.m. on the next day) mapped by Beijing census data are similar to the ground truth data, we estimated the baseline distribution, first, based upon records in CDRs. Second, we estimate a baseline distribution based upon Global Navigation Satellite System (GNSS) data. The results also show the Root Mean Square Error (RMSE) is about 5000 while the two baseline distributions mentioned above have an RMSE of over 13,500. Our estimation method provides a fast and simple process to map people’s actual density distributions at a more finely grained, i.e., hourly, temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.