BackgroundTrueperella pyogenes is a commensal and opportunistic pathogen that normally causes mastitis, liver abscesses and pneumonia of economically important livestock. To develop efficacious and potent vaccine against T. pyogenes, chimeric gene DNA vaccines were constructed and encapsulated in chitosan nanoparticles (pPCFN-CpG-CS-NPs).ResultsThe pPCFN-CpG-CS-NPs consists of the plo, cbpA, fimA, and nanH gene of T. pyogenes and CpG ODN1826. It was produced with good morphology, high stability, a mean diameter of 93.58 nm, and a zeta potential of + 5.27 mV. Additionally, chitosan encapsulation was confirmed to protect the DNA plasmid from DNase I digestion. The immunofluorescence assay indicated that the four-chimeric gene could synchronously express in HEK293T cells and maintain good bioactivity. Compared to the mice immunized with the control plasmid, in vivo immunization showed that mice immunized with the pPCFN-CpG-CS-NPs had better immune responses, and release of the plasmid DNA was prolonged. Importantly, immunization with pPCFN-CpG-CS-NPs could significantly protect mice from highly virulent T. pyogenes TP7 infection.ConclusionsThis study indicates that chitosan-DNA nanoparticles are potent immunization candidates against T. pyogenes infection and provides strategies for the further development of novel vaccines encapsulated in chitosan nanoparticles.Electronic supplementary materialThe online version of this article (10.1186/s12951-018-0337-2) contains supplementary material, which is available to authorized users.
The purpose of this review is to elaborate the role of Periplaneta (P.) americana L. in modern and traditional Chinese medicine (TCM) and compare the use of the species in these two forms of medical treatments. From searches on Google Scholar, PubMed, and Web of Science databases, studies were identified involving TCMs with P. americana, which have a history of use over several thousand years, and demonstrate how extracts from this insect play a role in the treatment of diseases through antibacterial, antiviral, antitumor activity, and enhancement of immune function. Extracts from P. americana have not been fully developed for clinical use because the active components have not been completely purified or their molecular mechanisms thoroughly understood. The development of extraction technology in modern Chinese medicine has revealed that many extracts from P. americana are able to play an important role in the control of diseases such as cancer. Drugs such as ‘Kangfuxin Solution’ and ‘Xinmailong Injection’ are now widely used for gastrointestinal ulcers and chronic heart failure, having achieved beneficial curative effects in clinical studies. Based on this, the information from studies of P. americana in TCM and modern medicine should be combined and their respective advantages applied. This review provides an overview of the role of P. americana in modern and TCM and thus contributes to identification of further applications and area requiring drug development.
Cancer-associated fibroblasts (CAFs) play a vital role in malignant transformation and progression of prostate cancer (PCa), and accumulating evidence suggests an enhancing effect of estrogens on PCa. The present study aimed to investigate the possible origin of prostate CAFs and the effects of estrogen receptors, G protein-coupled receptor 30 (GPR30) and estrogen receptor (ER)-α, on stromal cell activation. High expression of fibroblast activation protein (FAP), CD44, and nonmuscle myosin heavy chain B (SMemb) accompanied by low expression of smooth muscle differentiation markers was found in the stromal cells of PCa tissues and in cultured human prostate CAFs. Additionally, SMemb expression, which is coupled to cell phenotype switching and proliferation, was coexpressed with FAP, a marker of activated stromal cells, and with the stem cell marker CD44 in the stromal cells of PCa tissue. Prostate CAFs showed high GPR30 and low ERα expression. Moreover, GPR30 was coexpressed with FAP, CD44, and SMemb. Furthermore, the study demonstrated that the overexpression of GPR30 or the knockdown of ERα in prostate stromal cells induced the up-regulation of FAP, CD44, Smemb, and the down-regulation of smooth muscle markers. The conditioned medium from these cells promoted the proliferation and migration of LNCaP and PC3 PCa cells. GPR30 knockdown or ERα overexpression showed opposite effects. Finally, we present a novel mechanism whereby GPR30 limits ERα expression via inhibition of the cAMP/protein kinase A signaling pathway. These results suggest that stem-like cells within the stroma are a possible source of prostate CAFs and that the negative regulation of ERα expression by GPR30 is centrally involved in prostate stromal cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.