In this work, eco-friendly superhydrophobic coatings were prepared by dispersing hydrophobic silica nanoparticles and a waterborne silicone-modified polyurethane dispersion into an ethanol solution, which was free of fluorine and volatile toxic solvents. The effects of the silica content on the hydrophobicity and scratch resistance of the hydrophobic surfaces were investigated by WCA measurements and a sandpaper abrasion test, respectively. The experimental results indicated that when the silica content exceeded 30% by mass, the silica/silicone-modified polyurethane coatings had superhydrophobicity. Meanwhile, the superhydrophobic coatings with a silica content of 30% by mass simultaneously had the optimal mechanical stability. We studied the morphology and roughness of the hydrophobic surfaces with different silica content and attempted to briefly explain the influence mechanism of silica content. Furthermore, anti-icing and oil–water separation experiments were carried out on the superhydrophobic coatings, which exhibited good anti-icing performance and high separation efficiency. The eco-friendly superhydrophobic coating is expected to be applied in the fields of oil–water separation, anti-icing, and self-cleaning, etc.
This paper studies the drain current collapse of AlGaN/GaN metal-insulator-semiconductor high electron-mobility transistors (MIS-HEMTs) with NbAlO dielectric by applying dual-pulsed stress to the gate and drain of the device. For NbAlO MIS-HEMT, smaller current collapse is found, especially when the gate static voltage is −8 V. Through a thorough study of the gate-drain conductance dispersion, it is found that the growth of NbAlO can reduce the trap density of the AlGaN surface. Therefore, fewer traps can be filled by gate electrons, and hence the depletion effect in the channel is suppressed effectively. It is proved that the NbAlO gate dielectric can not only decrease gate leakage current but also passivate the AlGaN surface effectively, and weaken the current collapse effect accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.