Many studies have been conducted on the contributions of the construction industry to greenhouse gas (GHG) emissions. However, these studies focused on the embodied GHG emissions of buildings and were restricted by limited system boundaries due to a lack of detailed on and off-site process data, especially data for assembly and miscellaneous works as well as construction related human activities. This study therefore analyzed GHG emissions during the construction phase of a case study building on the basis of an extended system boundary in the context of China by utilizing detailed onsite process data. The results show that indirect emissions accounted for 97% of all GHG emissions. On-site electricity use and building materials production were the two greatest contributors to direct and indirect emissions respectively. Recombining the construction activities revealed that construction related human activities generated significant GHG emissions (385 tCO2e), which have been ignored in previous research. The findings also reveal that although some materials used during the construction process are negligible in terms of weight, such as polyamide safety nets and aluminum (<0.1%), they have a considerable impact on GHG emissions (2-3%).
We conducted a retrospective mortality study in an Inner Mongolian village exposed to well water contaminated by arsenic since the 1980s. Deaths occurring between January 1, 1997 and December 1, 2004 were classified according to underlying cause and water samples from household wells were tested for total arsenic. Heart disease mortality was associated with arsenic exposure, and the association strengthened with time exposed to the water source. Cancer mortality and all-cause mortality were associated with well-water arsenic exposure among those exposed 10-20 years. This is the first study to document increased arsenic-associated mortality in the Bayingnormen region of Inner Mongolia.
Abstract:Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with well water arsenic and there was an elevated prevalence among residents with water arsenic exposures as low as 5 μg/L-10 μg/L. The presence of skin lesions was also associated with selfreported cardiovascular disease.
Sustainable urban development has been receiving growing concerns from both city managers and urban residents across the world. As a yardstick of sustainability, urban carrying capacity (UCC) is an important conceptual underpinning that guides local governments in promoting sustainable urban development. However, existing studies still lack consensus not only on the theoretical aspects, but also on the methodological issues for UCC monitoring and evaluation. A knowledge gap exists, which this paper fills. This study aims to develop a practical UCC assessment framework to guide urban development towards achieving sustainability. The quantitative-based assessment framework provides a set of measurable indicators and benchmarks for city managers to conduct routine monitoring on progress toward urban sustainability, and helps identify deficient areas, which urgently need resource allocation to improve UCC. Focusing on a case study of Beijing, this study demonstrates that the framework is useful in promoting urban sustainability. This framework provides rich implications for other city prototypes in China as the nation marches into the next phase of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.