Long non‐coding RNA (lncRNA) plays important roles in tumour progression. Accumulating studies demonstrated that lncRNA colon cancer‐associated transcript 2 (CCAT2) acted as an oncogene in many tumours. However, the role of CCAT2 in the development of osteosarcoma has not been elucidated. In our study, we indicated that CCAT2 expression was up‐regulated in osteosarcoma tissues and cell lines (SOSP‐9607, MG‐63, U2OS and SAOS‐2). In addition, osteosarcoma cases with higher CCAT2 expression had a poorer disease‐free survival and shorter the overall survival time compared to those with lower expression. Overexpression of CCAT2 promoted osteosarcoma cell proliferation, invasion and cell cycle. Furthermore, ectopic expression of CCAT2 increased the expression of mesenchymal markers N‐cadherin, vimentin and snail and reduced the expression of N‐cadherin marker E‐cadherin. CCAT2 overexpression promoted the LATS2 and c‐Myc expression in osteosarcoma cell. These data indicated that CCAT2 served as an oncogene in osteosarcoma and promoted osteosarcoma cell proliferation, cell cycle and invasion.
Long noncoding RNA (lncRNA) Linc00511 is a novel lncRNA, and it was reported to play important roles in the progression and carcinogenesis of several tumors. However, the expression and biological roles of Linc00511 in osteosarcoma were still unknown. In this research, we showed that the expression of Linc00511 was upregulated in osteosarcoma samples and cell lines. Ectopic expression of Linc00511 promoted osteosarcoma cell growth, colony formation, and migration. Moreover, overexpression of Linc00511 enhanced the epithelial‐mesenchymal transition progression in osteosarcoma cell. In addition, we showed that elevated expression of Linc00511 suppressed microRNA‐765 (miR‐765) expression and promoted apurinic/apyrimidinic endonuclease 1 (APE1) expression in osteosarcoma cell. The expression of miR‐765 was downregulated in osteosarcoma cells and samples and was negatively related to Linc00511 expression in osteosarcoma tissues. Ectopic expression of miR‐765 inhibited osteosarcoma cell growth and migration. Furthermore, we showed that Linc00511 overexpression promoted MG‐63 cells proliferation, colony formation, and migration via downregulation of miR‐765. These results suggested that Linc00511 played as an oncogene in the development of osteosarcoma.
Osteosarcoma is the most common type of malignant bone tumor, often affecting adolescents and children. MicroRNAs (miRNAs) are a group of small, non-protein coding, endogenous RNAs that play critical roles in osteosarcoma tumorigenesis. In our study, we demonstrated that miR-448 expression was downregulated in osteosarcoma tissues and cell lines. Overexpression of miR-448 suppressed osteosarcoma cell proliferation, colony formation and migration. Moreover, we found that EPHA7 was a direct target gene of miR-448 in osteosarcoma cells. We further demonstrated that the EPHA7 expression level was upregulated in osteosarcoma tissues. Interestingly, the expression level of EPHA7 was inversely correlated with the expression level of miR-448 in osteosarcoma tissues. In addition, elevated expression of miR-448 suppressed osteosarcoma cell proliferation and invasion through targeting EPHA7. Taken together, these findings suggest that miR-448 functioned as a tumor suppressor gene in the development of osteosarcoma through targeting EPHA7.
Background Non-mass enhancement (NME) is a diagnostic dilemma and highly reliant on the experience of the radiologists. Texture analysis (TA) could serve as an objective method to quantify lesion characteristics. However, it remains unclear what role TA plays in a predictive model based on routine MRI characteristics. The purpose of this study was to explore the value of TA in distinguishing between benign and malignant NME in premenopausal women. Methods Women in whom NME was histologically proven (n = 147) were enrolled (benign: 58; malignant: 89) was retrospective. Then, 102 and 45 patients were classified as the training and validation groups, respectively. Scanning sequences included Fat-suppressed T2-weighted and fat-suppressed contrast-enhanced T1-weighted which were acquired on a 1.5T MRI system. Clinical and routine MR characteristics (CRMC) were evaluated by two radiologists according to the Breast Imaging and Reporting and Data system (2013). Texture features were extracted from all post-contrast sequences in the training group. The combination model was built and then assessed in the validation group. Pearson’s chi-square test and Mann–Whitney U test were used to compare categorical variables and continuous variables, respectively. Logistic regression analysis and receiver operating characteristic curve were employed to assess the diagnostic performance of CRMC, TA, and their combination model in NME diagnosis. Results The combination model showed superior diagnostic performance in differentiating between benign and malignant NME compared to that of CRMC or TA alone (AUC, 0.887 vs 0.832 vs 0.74). Moreover, compared to CRMC, the model showed high specificity (72.5% vs 80%). The results obtained in the validation group confirmed the model was promising. Conclusions With the combined use of TA and CRMC could afford an improved diagnostic performance in differentiating between benign and malignant NME.
Long noncoding RNAs (lncRNAs) have been shown to be involved in the development of osteoarthritis. However, the expression, function, and mechanism of DLEU1 in OA development remain largely unclear. The present reference demonstrates that DLEU1 is overexpressed in OA specimens compared to control cartilages. Inflammatory cytokines IL-1β, TNF-α, and IL-6 induce DLEU1 expression in chondrocytes. Ectopic expression of DLEU1 induces chondrocyte proliferation, degradation of ECM, and inflammation mediators such as IL-6, IL-8, and TNF-α secretion. Moreover, we demonstrated that DLEU1 targets miR-671-5p expression in chondrocytes. Overexpression of DLEU1 suppresses miR-671-5p expression in chondrocytes. The expression of miR-671-5p is decreased in OA specimens compared to control cartilages. There is a negative correlation between the expression of miR-671-5p and DLEU1 in OA specimens. Inflammatory mediators IL-1β, TNF-α, and IL-6 suppress miR-671-5p expression in OA specimens. Elevated expression of miR-671-5p suppresses chondrocyte proliferation, degradation of ECM, and secretion of inflammation mediators. DLEU1 overexpression promotes chondrocytes proliferation, degradation of ECM, and secretion of inflammation mediators via regulating miR-671-5p. These results suggested that DLEU1 acts as one destructive role in OA development via regulating miR-671-5p.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.