This paper investigates the problem on master-salve synchronization for stochastic neural networks with both time-varying and distributed time-varying delays. Together with the drive-response concept, LMI approach, and generalized convex combination, one novel synchronization criterion is obtained in terms of LMIs and the condition heavily depends on the upper and lower bounds of state delay and distributed one. Moreover, the addressed systems can include some famous network models as its special cases, which means that our methods extend those present ones. Finally, two numerical examples are given to demonstrate the effectiveness of the presented scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.