Landscape fragmentation threatens habitats, biodiversity and other ecosystem services. In tackling this threat, the dynamic processes of social-ecological systems should be recognised and understood. Although network analysis based on graph theory has been recognised as an efficient way of spatially understanding landscape or habitat connectivity, only few studies have offered specific approaches or suggestions for integrating detailed social-ecological values into geographical distributions. As a contribution to bridging this gap, this paper introduces a social-ecological network model for the issue of landscape or habitat fragmentation applied to the case of Stockholm, Sweden. Graph theory was used in combination with sociotope and biotope maps for simple visualisation of network situations in two-dimensional maps. The European crested tit (Lophophanes cristatus), European common toad (Bufo bufo) and human beings were selected as indicator species, based on a landscape ecology analysis in Stockholm Municipality in 2009. Slope, land use and human disturbance maps were assessed in order to decide cost values of travelling from node to node. Lease-cost-path accumulation was used to create ideal reference maps of green networks. Three separate maps were then developed for suggesting efficient routes for three indicators in city scale that mainly connect from the Royal National City Park to the other parts of the city. The model in Hjorthagen neighbourhood to highlight two practical paths that link this fragmented community to its neighbouring park areas. Findings make it possible to address two scales of network improvement strategies, namely first for the city-scale green network that connects geographical habitats (nodes) and the regional green wedges of the city, and the second that of neighbourhood links between habitats in detailed layers of green networks. Strategic improvement potentials are presented based on ideal reference maps of green networks correspondingly.
Alpine meadow plays vital roles in regional animal husbandry and the ecological environment. However, different grassland managements affect the structure and function of the alpine meadow. In this study, we selected three typical grassland managements including free grazing, enclosure, and artificial grass planting and conducted a field survey to study the effects of grassland managements on carbon fluxes in an alpine meadow. The carbon fluxes were observed by static chamber and environmental factors including vegetation and soil characteristics were measured simultaneously. Our results show that the alpine meadow was a CO2 and CH4 sink, and grassland managements had a significant effect on all CO2 fluxes, including gross ecosystem production (GEP, P< 0.001), net ecosystem production (NEP, P< 0.001) and ecosystem respiration (ER, P< 0.001) but had no significant effect on CH4 fluxes (P > 0.05). The ranking of GEP under the different grassland managements was enclosure > free grazing > artificial grass planting. Furthermore, NEP and ER at enclosure plots were significantly higher than those of the free grazing and artificial grass planting plots. In addition, different grassland managements also affected the vegetation and soil characteristics of the alpine meadow. The aboveground biomass of artificial grass planting was significantly higher than that of the free grazing and enclosure plots. The vegetation coverage under three different grassland managements was ranked in the order of enclosure > artificial grass planting > free grazing and significant differences were observed among them. Moreover, significant differences in the number of species (P< 0.01) and the Margalef richness index (P< 0.05) were detected under three different grassland managements. Further analysis of the relationship between environmental factors and carbon fluxes revealed that GEP and NEP of the alpine meadow were positively correlated with vegetation coverage, the number of species, and the Margalef richness index. Therefore, grassland restoration should be configured with multiple species, which could improve carbon sink capacity while considering the functions of grassland restoration and production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.