A measurement campaign is introduced for modeling radio channels with either line-of-sight (LoS) or non-line-of-sight (NLoS) connection between user equipment (UE) and NodeB (NB) in an operating universal mobile telecommunications system. A space-alternating generalized expectation-maximization (SAGE) algorithm is applied to estimate the delays and the complex attenuations of multipath components from the obtained channel impulse responses. Based on a novel LoS detection method of multipath parameter estimates, channels are classified into LoS and NLoS categories. Deterministic models which are named “channel maps” and fading statistical models have been constructed for LoS and NLoS, respectively. In addition, statistics of new parameters, such as the distance between the NB and the UE in LoS/NLoS scenarios, the life-distance of LoS channel, the LoS existence probability per location and per NB, the power variation at LoS to NLoS transition and vice versa, and the transition duration, are extracted. These models are applicable for designing and performance evaluation of transmission techniques or systems used by distinguishing the LoS and NLoS channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.