Given the restrictions on special geographic locations in development processes, the measurement and analysis of the ecological quality of the Hami Oasis are of great significance for the protection of this fragile oasis. In this study, the ecological quality of the Hami Oasis was monitored by constructing a remote sensing ecological index (RSEI) for arid areas. Using the standard deviation ellipse and moving window method, the ecological status and space–time changes were explored for both their external and internal factors in the Hami Oasis. Finally, a geo-detector was employed to determine the driving factors of the ecological quality of the Hami Oasis. The results revealed that: (1) In the remote sensing ecological index constructed in the Hami Oasis, the main influencing factors were dryness and wetness. The average value of the ecological quality of the oasis was less than 0.5, and the ecological quality level was relatively poor. Among the five grades of ecological quality in the Hami Oasis, the poor grade and the good grade showed the largest changes, decreasing by 200 and increasing by 300, respectively, which were mainly concentrated in the periphery of the oasis. (2) The improved ecological quality of the Hami Oasis was mainly manifested in the expansion of the artificial oasis, while the deteriorated area was manifested as an increase in the built-up area. Moreover, the ecological quality of the Hami Oasis presented a ringlike nesting distribution pattern from the internal built-up area to the artificial oasis periphery. (3) The external expansion direction of the ecological quality of the Hami Oasis featured southeast–northwest expansion, which was consistent with the direction of the rivers and traffic roads. The transformation between different ecological qualities in the oasis and the expansion of the built-up area were the reasons for the fragmentation of the Hami Oasis’ landscape. (4) Compared to a single factor, the dual-factor for the ecological quality of the Hami Oasis had stronger explanatory power. Moreover, changes in land use types caused changes in the ecological quality of the Hami Oasis. During the study period, we found that human activities had a more significant impact than natural factors on the development of the Hami Oasis. (5) The Moran’s I Index increased from 0.835268 in 2000 to 0.923976 in 2018, and the p values in the study area all reached a 0.05 significant level. At the same time, the areas with p values above the 0.01 and 0.001 significant levels have also increased significantly in the past 18 years.
The ecological protection and sustainable development of Urumqi have become an important part of the high-quality growth of the urban agglomeration on the northern slope of Tianshan Mountain. Under the impacts of multi-source factors, the ecological landscape pattern of Urumqi has changed due to it being in a fragile eco-environment, so an ecological network is desperately needed to enhance ecological security patterns. Taking Urumqi city as the study area, the ecological risk evaluation model and the minimum cumulative resistance model were integrated to analyze the spatial and temporal features of landscape ecological risk from 2000 to 2020, and the future land use simulation model was used to predict the ecological risk pattern of Urumqi in 2030, construct a landscape ecological network, and propose ecological security protection strategies. Since 2000, land use in Urumqi has undergone drastic changes: the built-up land area has increased significantly, the landscape has diversified, and landscape fragmentation has shown a decreasing trend from the main urban area as the core to the urban fringe. The high-risk landscape ecology shows a decreasing trend from east to west, mainly in the bare land areas with sparse vegetation, whereas the risk is relatively low in woodland, arable land, and built-up areas. The change of risk in the study area is mainly influenced by the typical defective factors of oasis cities such as urban expansion, land desertification, and sparse vegetation. The landscape ecological network is mainly located in the southwest, central, and east of the study area, whereas there is no corridor distribution in the north and southeast, which is mainly caused by the special geographical location and climatic conditions. The ecological network mainly consists of 10 ecological sources and 10 ecological corridors and proposes conservation strategies for the optimization of the landscape pattern and for the construction of the ecological security pattern in Urumqi, providing a guide for the improvement of ecological security.
Assessing how land use change will affect water production ecosystem services is essential to developing sound water resource management and ecosystem conservation. The results of a coordination analysis of land-use intensity and water yield based on future land-use simulation projections are useful for future land-use planning. To effectively assess water production rates, the PLUS and InVEST models were used to dynamically assess the changes in water production occurring in the urban agglomeration on the northern slopes of the Tianshan Mountains from 2000 to 2030 under different scenarios of land-use change. The results show that the water-production rates in the study area from 2000 to 2020 were 517.26 × 106 m3, 582.28 × 106 m3, and 456 × 106 m3, showing an increasing and then decreasing trend, with the water production function decreasing from the foothills of the Tianshan Mountains to the north and south, with values of 509.10 × 106 m33, 510.90 × 106 m3, and 502.28 × 106 m3 being presented for the three scenarios in 2030. The rapid economic development scenario presents the lowest water yield values and the ecological conservation development scenario presents the highest water yield values. Changes in water production rates are closely related to changes in land use, which can be verified further by an analysis of the coordination between land- use intensity and water production. For this study area, the ecological conservation development scenario may be more in line with the future urban development pattern, and the results of the present study can provide some scientific references for land-use planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.