The aim of this study was to evaluate the concentration of oleanolic acids (OA) in pomace, a winemaking byproduct, and its influence on the levels of plasma lipids in rats fed a high-fat diet and on hepatic gene expression using DNA microarray analysis in vivo. HPLC analyses of pomace ethanol extract (PEE) revealed a high amount of OA ranging from 4 to 11 g/100 g. Male Sprague-Dawley rats were fed a normal-fat diet (NF group), a high-fat diet with 21% lard (HF group), a high-fat diet with 0.05% OA (OA group, 50 mg/kg/day), or a high-fat diet with 0.45% PEE (PEE group, 450 mg/kg/day). Plasma triacylglycerol and phospholipid concentrations were significantly lower in the OA and PEE groups than in the HF group. The microarray analysis of hepatic mRNA revealed reduced expression levels of lipogenic genes including acetyl-CoA carboxylase and glycerol-3-phosphate acyltransferase, probably resulting from the suppression of transcription factor Srebf1 expression. Gene expression of gluconeogensis and inflammatory cytokines was also down-regulated in the OA and PEE groups, suggesting that administration of OA or PEE could ameliorate obesity-induced insulin resistance, as well as prevent hyperlipidemia.
Summary• Shoot branching is important for the establishment of plant architecture and productivity.• Here, characterization of rice (Oryza sativa) reduced culm number 1 (rcn1) mutants revealed that Rcn1 positively controls shoot branching by promoting the outgrowth of lateral shoots. Molecular studies revealed that Rcn1 encodes a novel member of ATP-binding cassette protein subfamily G (ABCG subfamily), also known as the white-brown complex (WBC) subfamily, and is designated OsABCG5.• Rcn1 is expressed in leaf primordia of main and axillary shoots, and in the vascular cells and leaf epidermis of older leaves. In addition, Rcn1 is expressed in the crown root primordia, endodermis, pericycle and stele in the root. No effect on Rcn1 expression in shoots or roots was seen when the roots were treated with auxins. Phenotypic analyses of rcn1 and tillering dwarf 3 (d3) double mutants at the seedling stage clarified that Rcn1 works independently of D3 in the branching inhibitor pathway.• Rcn1 is the first functionally defined plant ABCG protein gene that controls shoot branching and could thus be significant in future breeding for high-yielding rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.