Patients with AIP are at high risk of having various cancers. The highest risk for cancer in the first year after AIP diagnosis and absence of AIP relapse after successful treatment of the coexisting cancers suggest that AIP may develop as a paraneoplastic syndrome in some patients.
By preventing tumor ingrowth and migration, covered SEMSs with an anti-migration system had a longer duration of patency than uncovered SEMSs, which recommends their use in the palliative treatment of patients with biliary obstruction due to pancreatic carcinomas.
Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.
The tomato is an excellent model for studies of plants bearing berry-type fruits and for experimental studies of the Solanaceae family of plants due to its conserved genetic organization. In this study, a comprehensive mutant tomato population was generated in the background of Micro-Tom, a dwarf, rapid-growth variety. In this and previous studies, a family including 8,598 and 6,422 M2 mutagenized lines was produced by ethylmethane sulfonate (EMS) mutagenesis and γ-ray irradiation, and this study developed and investigated these M2 plants for alteration of visible phenotypes. A total of 9,183 independent M2 families comprising 91,830 M2 plants were inspected for phenotypic alteration, and 1,048 individual mutants were isolated. Subsequently, the observed mutant phenotypes were classified into 15 major categories and 48 subcategories. Overall, 1,819 phenotypic categories were found in 1,048 mutants. Of these mutants, 549 were pleiotropic, whereas 499 were non-pleiotropic. Multiple different mutant alleles per locus were found in the mutant libraries, suggesting that the mutagenized populations were nearly saturated. Additionally, genetic analysis of backcrosses indicated the successful inheritance of the mutations in BC1F2 populations, confirming the reproducibility in the morphological phenotyping of the M2 plants. To integrate and manage the visible phenotypes of mutants and other associated data, we developed the in silico database TOMATOMA, a relational system interfacing modules between mutant line names and phenotypic categories. TOMATOMA is a freely accessible database, and these mutant recourses are available through the TOMATOMA (http://tomatoma.nbrp.jp/index.jsp).
To accelerate functional genomic research in tomato, we developed a Micro-Tom TILLING (Targeting Induced Local Lesions In Genomes) platform. DNA pools were constructed from 3,052 ethyl methanesulfonate (EMS) mutant lines treated with 0.5 or 1.0% EMS. The mutation frequency was calculated by screening 10 genes. The 0.5% EMS population had a mild mutation frequency of one mutation per 1,710 kb, whereas the 1.0% EMS population had a frequency of one mutation per 737 kb, a frequency suitable for producing an allelic series of mutations in the target genes. The overall mutation frequency was one mutation per 1,237 kb, which affected an average of three alleles per kilobase screened. To assess whether a Micro-Tom TILLING platform could be used for efficient mutant isolation, six ethylene receptor genes in tomato (SlETR1–SlETR6) were screened. Two allelic mutants of SlETR1 (Sletr1-1 and Sletr1-2) that resulted in reduced ethylene responses were identified, indicating that our Micro-Tom TILLING platform provides a powerful tool for the rapid detection of mutations in an EMS mutant library. This work provides a practical and publicly accessible tool for the study of fruit biology and for obtaining novel genetic material that can be used to improve important agronomic traits in tomato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.