Physiological differentiation (including antibiotic production) in microorganisms usually starts when cells encounter adverse environmental conditions and is frequently accompanied by an increase in the accumulation of intracellular ppGpp. We have found that the acquisition of certain streptomycin-resistant (str) mutations enables cells to overproduce antibiotics, demonstrating an increase in productivity 5- to 50-fold greater than that of wild-type strains. The frequency of such antibiotic-overproducing strains among the str mutants was shown to range from 3 to 46%, as examined with several strains of the genera Streptomyces,Bacillus, and Pseudomonas. Analysis of str mutants from Bacillus subtilisMarburg 168 revealed that a point mutation occurred within therpsL gene, which encodes the ribosomal protein S12, changing Lys-56 (corresponding to Lys-43 in Escherichia coli) to Asn, Arg, Thr, or Gln. Antibiotic productivity increased in a hierarchical manner depending upon which amino acid residue replaced Lys at this position. The strA1 mutation, a genetic marker frequently used for mapping, had no effect on antibiotic productivity even though it was found to result in an amino acid alteration of Lys-56 to Ile. Gene replacement experiments with thestr alleles demonstrated unambiguously that thestr mutation is responsible for the antibiotic overproductivity observed. These results offer a rational approach for improving the production of antibiotic (secondary metabolism) from microorganisms.
3-Methoxybenzamide (3-MBA), which is known to be an inhibitor of ADP-ribosyltransferase, inhibits cell division in Bacillus subtilis, leading to filamentation and eventually lysis of cells. Our genetic analysis of 3-MBA-resistant mutants indicated that the primary target of the drug is the cell division system involving FtsZ function during both vegetative growth and sporulation.
Abstaract.The objective of this study was to elucidate the mechanism underlying the further suppression of serum testosterone (T) by diethylstilbestrol diphosphate (DES-DP) in patients with prostate cancer refractory to hormonal treatment.These patients received an LHRH agonist with or without a non-steroidal androgen-receptor blocker or a gestagen before DES-DP.We measured serum levels of total and free T, dihydrotestosterone (DHT), estradiol (E2), dehydroepiandrosterone sulfate (DHEA-S), dehydroepiandrosterone (DHEA), androstenedione, cortisol, aldosterone before and during intravenous administration of high doses of DES-DP (500 or 1000 mg/day).DES-DP administration suppressed the serum levels of FSH (p=0.04) and total T (p=0.02), and eliminated free T (p =0.04) and E2 (p = 0.04) from serum, while reducing serum DHEA-S to approximately two-thirds of the pretreatment level (p=0.03).In contrast, serum levels of SHBG (p=0.02) and cortisol (p=0.02) were markedly increased after DES-DP administration.The latter had no significant effect on serum levels of LH, DHT, ACTH, 17a-hydroxypregnenolone, 17a-hydroxyprogesterone, DHEA, androstenedione, or aldosterone. The results suggest that the potent suppression of circulating total T by DES-DP is caused, in part, by the inhibitory effect of DES-DP on serum DHEA-S level. In most patients, high-dose DES-DP treatment completely suppressed the serum level of free T, while possibly elevating serum SHBG and decreasing serum total T. The mechanisms that maintain the serum level of serum DHT during DES-DP treatment require further elucidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.