Some harmful volatile organic compounds (VOCs), such as formaldehyde, are regulated atmospheric pollutants. Therefore, development of a material to remove these VOCs is required. We focused on hydroxyapatite, which had been biomimetically coated on a polyamide film, as an adsorbent and found that formaldehyde was successfully removed by this adsorbent. The amount of formaldehyde adsorbed increased with the area of the polyamide film occupied by hydroxyapatite. The amount of adsorbed formaldehyde and its rate of adsorption were larger for hydroxyapatite deposited on polyamide film than for the commercially available calcined hydroxyapatite powder. This high adsorption ability is achieved by the use of nanosized particles of hydroxyapatite with low crystallinity and containing a large number of active surface sites. Therefore, hydroxyapatite biomimetically coated on organic substrates can become a candidate material for removing harmful VOCs such as formaldehyde.
Modification of organic polymer with silanol groups in combination with calcium salts enables the polymer to show bioactivity, that is, the polymer forms apatite on its surface after exposure to body environment. However, how modification with silanol groups influences ability of apatite formation on the polymer substrate and adhesive strength between polymer and apatite is not yet known. In the present study, polyamide containing carboxyl groups was modified with different amounts of silanol groups, and its apatite-forming ability in 1.5SBF, which contained ion concentrations 1.5 times those of simulated body fluid (SBF), was examined. The rate of apatite formation increased with increasing content of silanol groups in the polyamide films. This may be attributed to enhancement of dipole interactions. A tendency for the adhesive strength of the apatite layer on the polyamide film to be decreased with increasing content of silanol groups was observed. This may be attributed to swelling in 1.5SBF and having a high degree of shrinkage after drying. These findings clearly show that modification of organic polymers with the functional groups induces apatite deposition, and also determines the adhesive strength of the apatite layer to the organic substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.