Conventional solution-phase synthesis of azo compounds is complicated by the need for precise pH and temperature control, high concentrations of pH control reagents, and by-product removal. The microdroplet synthesis method has solved these problems.
Recently, chemical operations with microfluidic devices, especially droplet-based operations, have attracted considerable attention because they can provide an isolated small-volume reaction field. However, analysis of these operations has been limited mostly to aqueous-phase reactions in water droplets due to device material restrictions. In this study, we have successfully demonstrated droplet formation of five common organic solvents frequently used in chemical synthesis by using a simple silicon/glass-based microfluidic device. When an immiscible liquid with surfactant was used as the continuous phase, the organic solvent formed droplets similar to water-in-oil droplets in the device. In contrast to conventional microfluidic devices composed of resins, which are susceptible to swelling in organic solvents, the developed microfluidic device did not undergo swelling owing to the high chemical resistance of the constituent materials. Therefore, the device has potential applications for various chemical reactions involving organic solvents. Furthermore, this droplet generation device enabled control of droplet size by adjusting the liquid flow rate. The droplet generation method proposed in this work will contribute to the study of organic reactions in microdroplets and will be useful for evaluating scaling effects in various chemical reactions.
This paper presents a method for utilizing three-dimensional microfluidic channels fully to realize multiple functions in a single device. The final device structure was achieved by combining three independent modules that consisted of horizontal and vertical channels. The device allowed for the one-step generation of water-in-oil-in-water droplets without the need for partial treatment of the polydimethylsiloxane channel surface using separate modules for generating water-in-oil droplets on the horizontal plane and oil-in-water droplets on the vertical plane. The second vertically structured module provided an efficient flow for the generation of highly wettable liquid droplets, and tuning of the first horizontally structured module enabled different modes of inner-core encapsulation within the oil shell. The successful integration of the vertical and horizontal channels for core-shell droplet generation and the chemical synthesis of a metal complex within the droplets were evaluated. The proposed approach of integrating independent modules will expand and enhance the functions of microfluidic platforms.
A simple printing process to design a novel piezoelectric energy-harvesting device made from vinylidene fluoride/trifluoroethylene copolymers is presented. Fabrication using a metal nanoink and a household printer dramatically reduced the fabrication complexity. In addition, this process employed low-temperature steps, and thus the structural damage to the polymers resulting from high-temperature annealing was avoided. By stacking the devices and connecting them in parallel, the generated energy was increased and electric power of ∼1.12 μJ was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.