In esophageal squamous cell carcinoma (ESCC), a subset of cells defined by high expression of CD44 and low expression of CD24 has been reported to possess characteristics of cancer stem-like cells (CSCs). Novel therapies directly targeting CSCs have the potential to improve prognosis of ESCC patients. Although fibroblast growth factor-2 (FGF-2) expression correlates with recurrence and poor survival in ESCC patients, the role of FGF-2 in regulation of ESCC CSCs has yet to be elucidated. We report that FGF-2 is significantly upregulated in CSCs and significantly increases CSC content in ESCC cell lines by inducing epithelial-mesenchymal transition (EMT). Conversely, the FGFR inhibitor, AZD4547, sharply diminishes CSCs via induction of mesenchymal-epithelial transition. Further experiments revealed that MAPK/Erk kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is crucial for FGF-2-mediated CSC regulation. Pharmacological inhibition of FGF receptor (FGFR)-mediated signaling via AZD4547 did not affect CSCs in Ras mutated cells, implying that Mek/Erk pathway, downstream of FGFR signaling, might be an important regulator of CSCs. Indeed, the Mek inhibitor, trametinib, efficiently suppressed ESCC CSCs even in the context of Ras mutation. Consistent with these findings in vitro, xenotransplantation studies demonstrated that inhibition of FGF-2-mediated FGFR/Erk signaling significantly delayed tumor growth. Taken together, these findings indicate that FGF-2 is an essential factor regulating CSCs via Mek/Erk signaling in ESCC. Additionally, inhibition of FGFR and/or Mek signaling represents a potential novel therapeutic option for targeting CSCs in ESCC.
In our previous study, we genetically analyzed bovine viral diarrhea viruses (BVDVs)
isolated from 2000 to 2006 in Japan and reported that subgenotype 1b viruses were
predominant. In the present study, 766 BVDVs isolated from 2006 to 2014 in Hokkaido,
Japan, were genetically analyzed to understand recent epidemics. Phylogenetic analysis
based on nucleotide sequences of the 5′-untranslated region of viral genome revealed that
766 isolates were classified as genotype 1 (BVDV-1; 544 isolates) and genotype 2 (BVDV-2;
222). BVDV-1 isolates were further divided into BVDV-1a (93), 1b (371) and 1c (80)
subgenotypes, and all BVDV-2 isolates were grouped into BVDV-2a subgenotype (222). Further
comparative analysis was performed with BVDV-1a, 1b and 2a viruses isolated from 2001 to
2014. Phylogenetic analysis based on nucleotide sequences of the viral glycoprotein E2
gene, a major target of neutralizing antibodies, revealed that BVDV-1a, 1b and 2a isolates
were further classified into several clusters. Cross-neutralization tests showed that
BVDV-1b isolates were antigenically different from BVDV-1a isolates, and almost BVDV-1a,
1b and 2a isolates were antigenically similar among each subgenotype and each E2 cluster.
Taken together, BVDV-1b viruses are still predominant, and BVDV-2a viruses have increased
recently in Hokkaido, Japan. Field isolates of BVDV-1a, 1b and 2a show genetic diversity
on the E2 gene with antigenic conservation among each subgenotype during the last 14
years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.