Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-α and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection.
SummaryWe generated rice lines with increased content of nicotianamine (NA), a key ligand for metal transport and homeostasis. This was accomplished by activation tagging of rice nicotianamine synthase 2 (OsNAS2). Enhanced expression of the gene resulted in elevated NA levels, greater Zn accumulations and improved plant tolerance to a Zn deficiency. Expression of Zn-uptake genes and those for the biosynthesis of phytosiderophores (PS) were increased in transgenic plants. This suggests that the higher amount of NA led to greater exudation of PS from the roots, as well as stimulated Zn uptake, translocation and seed-loading. In the endosperm, the OsNAS2 activation-tagged line contained up to 20-fold more NA and 2.7-fold more zinc. Liquid chromatography combined with inductively coupled plasma mass spectrometry revealed that the total content of zinc complexed with NA and 2¢-deoxymugineic acid was increased 16-fold. Mice fed with OsNAS2-D1 seeds recovered more rapidly from a zinc deficiency than did control mice receiving WT seeds. These results demonstrate that the level of bio-available zinc in rice grains can be enhanced significantly by activation tagging of OsNAS2.
Vascular endothelial growth factor (VEGF) is a key mediator in the development of airway immune dysfunction to inhaled allergens. However, the exact role of its receptors-mediated signaling is controversial. In this study, we evaluated the role of VEGF receptor (VEGFR)-1– and VEGFR-2–mediated signaling in T cell priming and polarization in the context of inhalation of LPS-containing allergens. A murine asthma model of mixed Th1 and Th17 cell responses was generated using intranasal sensitization with LPS-containing allergens. Pharmacologic intervention was performed during sensitization. In vivo production of VEGF and Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) were upregulated by airway exposure to LPS. Pharmacological intervention with a VEGFR-2–neutralizing Ab (anti-Flk1 mAb) abolished the production of IL-6 (but not IL-12p70) and the subsequent development of allergen-specific Th17 cell response. On the other hand, blocking VEGFR-1 signaling with a VEGFR-1 antagonist (anti-Flt1 hexapeptide) did not affect the production of IL-12p70 and IL-6. However, blocking VEGFR-1 signaling resulted in T cell tolerance rather than priming, mainly by inhibiting the maturation of lung dendritic cells, and their migration into lung-draining lymph nodes. These results suggest that T cell priming to LPS-containing allergens depends on VEGFR-1–mediated signaling, and the subsequent Th17 polarization depends on VEGFR-2 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.