MicroRNAs (miRNAs) are a class of 18-27-nucleotides single-stranded RNA molecules that regulate gene expression at the post-transcriptional level. It has been demonstrated that miRNAs regulate a variety of physiological functions, including development, cell differentiation, proliferation, and apoptosis. There are growing evidence showed that miRNAs can affect the genesis and development of tumor and play a kind of tumor suppressor or oncogenic function by regulating its targetted gene-related signal pathway. miRNA-21 is one of the early discovered miRNAs in human cells, and the expression of miRNA-21 is significantly upregulated in different kinds of solid tumors. Its abnormal expression levels are closely associated with pathogenesis of cancers. This review summarizes the recent study on the field of miRNA-21 and its association with cancer.
Recently, nanoscale (<100 nm) inorganic materials, especially spherical shaped zinc oxide (ZnO-QDs), have received a lot of attention from the broad community because of their potential utilization in various technologies.
The objective of this study was to investigate the effect of exogenous selenium (Se) supply (0, 2, 4, 8, 16 μM) on the growth, lipid peroxidation and antioxidative enzyme activity of 100 mM NaCl-stressed melon (<em>Cucumis melo</em> L.) seedlings. Salt stress significantly reduced the growth attributes including stem length, stem diameter, dry weight and increased antioxidative enzyme activity [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)]. Moreover, the plant exhibited a significant increase in electrolyte leakage and malondialdehyde (MDA) content under NaCl stress. Se supplementation not only improved the growth parameters but also successfully ameliorated the adverse effect caused by salt stress in melon seedlings. However, the mitigation of NaCl-stressed seedlings was different depending on the Se concentration. At lower concentrations (2–8 μM), Se improved growth and acted as antioxidant by inhibiting lipid peroxidation and increasing in SOD and POD enzymes activity under salt stress. At higher concentrations (16 μM), Se exerted diminished beneficial effects on growth. Whereas CAT activity was enhanced. The result indicated that Se supplementation had a positive physiological effect on the growth and development of salt-stressed melon seedlings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.