A green fluorescent protein (GFP)-expressing strain of Fusarium oxysporum f.sp. melonis race 1AE2 (FOM 1AE2-GFP) was used to visualize infection of a susceptible melon cultivar, Ein Dor (ED). At 1-2 days post-inoculation (d.p.i.), the fungus grew on the root epidermis and adhered to epidermal cell borders. By day 4, the mycelium crossed the cortex and endodermis through narrow pores in cell walls and reached xylem vessels, where it sporulated and produced secondary hyphae that grew upwards. Colonization dynamics of ED seedlings were compared with those of a genetically resistant line, BIZ. FOM 1AE2-GFP colonized the resistant plant's vascular system, but the incidence of seedling infection was lower than in ED, suggesting stronger defence responses in BIZ expressed at the pre-xylem stage of infection. Infection of the vascular system of BIZ was slower: at 11 d.p.i., FOM 1AE2-GFP only colonized the lower hypocotyl sections of BIZ, whilst the upper hypocotyls of ED were already infected, indicating that BIZ also restricted FOM 1AE2 movement in the xylem. The expression patterns of three defence genes were compared between the resistant and susceptible genotypes using real-time PCR. Transcript levels of phenylalanine ammonia lyase (PAL), chitinase (CHI) and hydroperoxide lyase (HPL) were induced to a greater extent in BIZ than in ED. A constitutive two-to fourfold difference between BIZ and ED in the basal levels of all three transcripts was also apparent. Both the constitutive and inducible defence responses could contribute to reduced vascular colonization of the resistant genotype.
The soil-borne, asexual fungus Fusarium oxysporum f.sp. melonis (FOM) is a causal agent of muskmelon wilt disease. The current study focused on the most virulent race of FOM-race 1,2. The tagged mutant D122, generated by Agrobacterium tumefaciens-mediated transformation, caused the delayed appearance of initial wilt disease symptoms, as well as a 75% reduction in pathogenicity. D122 was impaired in the gene product homologous to the Snt2-like transcription factor of Schizosaccharomyces pombe. Involvement of snt2 in the early stage of FOM pathogenesis and its requirement for host colonization were confirmed by targeted disruption followed by quantitative reverse transcription-polymerase chain reaction analysis of snt2 expression in planta. Δsnt2 mutants of FOM and Neurospora crassa exhibited similar morphological abnormalities, including a reduction in conidia production and biomass accumulation, slower vegetative growth and frequent hyphal septation. In N. crassa, snt-2 is required for sexual development, as Δsnt-2 mutants were unable to produce mature perithecia. Suppressive subtraction hybridization analysis of the D122 mutant versus wild-type isolate detected four genes (idi4, pdc, msf1, eEF1G) that were found previously in association with the target of rapamycin (TOR) kinase pathway. Expression of the autophagy-related idi4 and pdc genes was found to be up-regulated in the Δsnt2 FOM mutant. In N. crassa, disruption of snt-2 also conferred a significant over-expression of idi4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.