A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template. The catalytic mechanism is elucidated by the spectroscopic detection of iron hydride and amide intermediates.
Metal oxides with their myriad compositions, structures and bonding exhibit an incredibly diverse range of properties. It is however the defects in metal oxides that endow them with a variety of functions and it is the ability to chemically tailor the type, population and distribution of defects on the surface and in the bulk of metal oxides that delivers utility in different applications. In this Tutorial Review, we discuss how metal oxides with designed defects can be synthesized and engineered, to enable heterogeneous catalytic hydrogenation of gaseous carbon dioxide to chemicals and fuels. If this approach to utilization and valorization of carbon dioxide could be developed at industrially significant rates, efficiencies and scales and made economically competitive with fossil-based chemicals and fuels, then carbon dioxide refineries envisioned in the future would be able to contribute to the reduction of greenhouse gas emissions, ameliorate climate changes, provide energy security and enable protection of the environment. This would bring the vision of a sustainable future closer to reality.
Herein we introduce a straightforward, low cost, scalable, and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous-carbon/carbon-nanotube composite membrane, dubbed "HNCM/CNT". The membrane is demonstrated to function as a binder-free, high-performance gas diffusion electrode for the electrocatalytic reduction of CO to formate. The Faradaic efficiency (FE) for the production of formate is 81 %. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.