Conventional intraoperative computed tomography (CT) has a long scan time, degrading the image quality. Its large size limits the position of a surgeon during surgery. Therefore, this study proposes a CT system comprising of eight carbon-nanotube (CNT)-based x-ray sources and 16 detector modules to solve these limitations. Gantry only requires 45° of rotation to acquire the whole projection, reducing the scan time to 1/8 compared to the full rotation. Moreover, the volume and scan time of the system can be significantly reduced using CNT sources with a small volume and short pulse width and placing a heavy and large high-voltage generator outside the gantry. We divided the proposed system into eight subsystems and sequentially devised a geometry calibration method for each subsystem. Accordingly, a calibration phantom consisting of four polytetrafluoroethylene beads, each with 15 mm diameter, was designed. The geometry calibration parameters were estimated by minimizing the difference between the measured bead projection and the forward projection of the formulated subsystem. By reflecting the estimated geometry calibration parameters, the projection data were obtained via rebinning to be used in the filtered-backprojection reconstruction. The proposed calibration and reconstruction methods were validated by computer simulations and real experiments. Additionally, the accuracy of the geometry calibration method was examined by computer simulation. Furthermore, we validated the improved quality of the reconstructed image through the mean-squared error (MSE), structure similarity (SSIM), and visual inspections for both the simulated and experimental data. The results show that the calibrated images, reconstructed by reflecting the calibration results, have smaller MSE and higher SSIM values than the uncalibrated images. The calibrated images were observed to have fewer artifacts than the uncalibrated images in visual inspection, demonstrating that the proposed calibration and reconstruction methods effectively reduce artifacts caused by geometry misalignments.
Abstract. This paper describes the implementation of a 3D handheld scanning system based on visual inertial pose estimation and structured light technique.3D scanning system is composed of stereo camera, inertial navigation system (INS) and illumination projector to collect high resolution data for close range applications. The proposed algorithm for visual pose estimation is either based on feature matching or using accurate target object. The integration of INS enables the scanning system to provide the fast and reliable pose estimation supporting visual pose estimates. Block matching algorithm was used to render two view 3D reconstruction. For multiview 3D approach, rough registration and final alignment of point clouds using iterative closest point algorithm further improves the scanning accuracy. The proposed system is potentially advantageous for the generation of 3D models in bio-medical applications.
Abstract. This paper presents highly optimized implementation of image registration method that is invariant to rotation scale and translation. Image registration method using FFT works with comparable accuracy as similar methods proposed in the literature, but practical applications seldom use this technique because of high computational requirement. However, this method is highly parallelizable and offloading it to the commodity graphics cards increases its performance drastically. We are proposing the parallel implementation of FFT based registration method on CUDA and OpenCL. Performance analysis of this implementation suggests that the parallel version can be used for real time image registration even for image size up to 2k x 2k. We have achieved significant speed up of up to 345x on NVIDIA GTX 580 using CUDA and up to 116x on AMD HD 6950 using OpenCL. Comparison of our implementation with other GPU based registration method reveals that our implementation performs better compared to other implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.