Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer‐based MPs with well‐defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically‐produced biopolymer MPs for biomedical applications is also provided.
Silica nanoparticles (SiNPs) have been utilized to construct bioactive nanostructures comprising surface topographic features and bioactivity that enhances the activity of bone cells onto titanium-based implants. However, there have been no previous attempts to create microrough surfaces based on SiNP nanostructures even though microroughness is established as a characteristic that provides beneficial effects in improving the biomechanical interlocking of titanium implants. Herein, a protein-based SiNP coating is proposed as an osteopromotive surface functionalization approach to create microroughness on titanium implant surfaces. A bioengineered recombinant mussel adhesive protein fused with a silica-precipitating R5 peptide (R5-MAP) enables direct control of the microroughness of the surface through the multilayer assembly of SiNP nanostructures under mild conditions. The assembled SiNP nanostructure significantly enhances the in vitro osteogenic cellular behaviors of preosteoblasts in a roughness-dependent manner and promotes the in vivo bone tissue formation on a titanium implant within a calvarial defect site. Thus, the R5-MAP-based SiNP nanostructure assembly could be practically applied to accelerate bone-tissue growth to improve the stability and prolong the lifetime of medical implantable devices.
During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.