We describe our submission for the Breaker phase of the second Fact Extraction and VERification (FEVER) Shared Task. Our adversarial data can be explained by two perspectives. First, we aimed at testing model's ability to retrieve evidence, when appropriate query terms could not be easily generated from the claim. Second, we test model's ability to precisely understand the implications of the texts, which we expect to be rare in FEVER 1.0 dataset. Overall, we suggested six types of adversarial attacks. The evaluation on the submitted systems showed that the systems were only able get both the evidence and label correct in 20% of the data. We also demonstrate our adversarial run analysis in the data development process.
Natural language inference (NLI) is the task of detecting the existence of entailment or contradiction in a given sentence pair. Although NLI techniques could help numerous information retrieval tasks, most solutions for NLI are neural approaches whose lack of interpretability prohibits both straightforward integration and diagnosis for further improvement. We target the task of generating token-level explanations for NLI from a neural model. Many existing approaches for token-level explanation are either computationally costly or require additional annotations for training. In this article, we first introduce a novel method for training an explanation generator that does not require additional human labels. Instead, the explanation generator is trained with the objective of predicting how the model's classification output will change when parts of the inputs are modified. Second, we propose to build an explanation generator in a multi-task learning setting along with the original NLI task so the explanation generator can utilize the model's internal behavior. The experiment results suggest that the proposed explanation generator outperforms numerous strong baselines. In addition, our method does not require excessive additional computation at prediction time, which renders it an order of magnitude faster than the best-performing baseline.
Transformer-based rankers have shown state-of-the-art performance. However, their self-attention operation is mostly unable to process long sequences. One of the common approaches to train these rankers is to heuristically select some segments of each document, such as the first segment, as training data. However, these segments may not contain the query-related parts of documents.To address this problem, we propose query-driven segment selection from long documents to build training data. The segment selector provides relevant samples with more accurate labels and non-relevant samples which are harder to be predicted. The experimental results show that the basic BERT-based ranker trained with the proposed segment selector significantly outperforms that trained by the heuristically selected segments, and performs equally to the state-of-the-art model with localized self-attention that can process longer input sequences. Our findings open up new direction to design efficient transformer-based rankers. CCS CONCEPTS• Information systems → Retrieval models and ranking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.