School-aged children who underwent repair of ventricular septal defect regardless of the type of treatment (surgery or transcatheter closure) exhibit internalising behavioural problems. Risk factors for developing problems are young age, scarring, post-operative atrioventricular block, and maternal anxiety. In particular, maternal anxiety is the most important risk factor.
Vascular remodeling and smooth muscle cell proliferation are hallmark pathogenic features of pulmonary artery hypertension. MicroRNAs, endogenously expressed small noncoding RNAs, regulate gene expression at the posttranscriptional level. It has previously been shown that miR-17 overexpression in cultured human pulmonary artery smooth muscle cell (hPASMC) resulted in increased viable cell number. Previously, we have found that arginase II promotes hypoxia-induced proliferation in hPASMC. Therefore, we hypothesized that miR-17 would be upregulated by hypoxia in hPASMC and would result in greater arginase II expression. We found that levels of miR-17-5p and arginase II were significantly greater in cultured hPASMC exposed to 1% O2 for 48 h than in hPASMC exposed to 21% O2 for 48 h. Furthermore, inhibiting miR-17-5p expression decreased hypoxia-induced arginase II protein levels in hPASMC. Conversely, overexpressing miR-17-5p resulted in greater arginase II protein levels. Somewhat surprisingly, arginase II inhibition was associated with lower miR-17-5p expression in both normoxic and hypoxic hPASMC, whereas overexpressing arginase II resulted in greater miR-17-5p expression in hPASMC. These findings suggest that hypoxia-induced arginase II expression is not only regulated by miR-17-5p but also that there is a feedback loop between arginase II and miR-17-5p in hPASMC. We also found that the arginase II-mediated regulation of miR-17-5p was independent of either p53 or c-myc. We also found that l-arginine, the substrate for arginase II, and l-ornithine, the amino acid product of arginase II, were not involved in the regulation of miR-17-5p expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.