Aliovalent defects are extremely effective in manipulating charge transport and atomic vibrational properties for thermoelectric enhancements. Electronic performance of thermoelectrics is optimized at a reduced Fermi level of $0.3, which causes the optimal carrier concentration (n opt) to be strongly temperature dependent. This motivates a dynamic doping approach for electronic enhancements through an increase with temperature of solubility of aliovalent dopants. In addition, the defects could simultaneously act as scattering sources of phonons for reducing the lattice thermal conductivity. These effects are illustrated in this work by the temperature-dependent excess Cu solubility in n-PbTe 0.75 Se 0.25 thermoelectrics, in which both carriers and dislocations are induced for regulating the electronic and phononic transport properties for a realization of an extraordinary thermoelectric figure of merit. The resultant defect structures and temperature gradient doping effects (for aliovalent solutes) could in principle open extra possibilities for optimizing charge and phonon transport properties in thermoelectrics.
In‐grain dislocation‐induced lattice strain fluctuations are recently revealed as an effective avenue for minimizing the lattice thermal conductivity. This effect could be integratable with electronic enhancements such as by band convergence, for a great advancement in thermoelectric performance. This motivates the current work to focus on the thermoelectric enhancements of p‐type PbTe alloys, where monotelluride‐alloying and Na‐doping are used for a simultaneous manipulation on both dislocation and band structures. As confirmed by synchrotron X‐ray diffractions and Raman measurements, the resultant dense in‐grain dislocations induce lattice strain fluctuations for broadening the phonon dispersion, leading to an exceptionally low lattice thermal conductivity of ≈0. 4 W m‐K−1. Band structure calculations reveal the convergence of valence bands due to monotelluride‐alloying. Eventually, the integration of both electronic and thermal improvements lead to a realization of an extraordinary figure of merit zT of ≈2.5 in Na0.03Eu0.03Cd0.03Pb0.91Te alloy at 850 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.