Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na+/K+ ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na+/K+ ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na+/K+ ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na+/K+ ATPase, which did not require current flow through open nAChRs. In turn, Na+/K+ ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na+/K+ ATPase.
A series of novel phthalic diamide derivatives containing 1,2,3‐triazole moiety were synthesized using one‐pot click chemistry approach and characterized by 1H NMR and HRMS. The insecticidal activity against armyworm (Mythimna separata), Tetranychu scinnabarinus and cowpea aphid (Aphis craccivora) was evaluated. Compounds 4II‐a and 4II‐i showed 50% insecticidal activity against armyworm (Mythimna separata) at the concentration of 4 mg/L and one‐third of the compounds had moderate activity against Tetranychus cinnabarinus at 500 mg/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.