Grinding induces residual stresses, which can play an important role on the fatigue of the component. In general, residual stresses in a ground surface are primarily generated due to three effects: thermal expansion and contraction during grinding, plastic deformation caused by the abrasive grains of the wheel and phase transformations due to high grinding temperature. It was found that thermal expansion and plastic deformation in the grinding process were the major causes of residual stresses. In this paper, an analysis model for the calculation of residual stresses induced by a surface grinding process on an ultrahigh-strength steel (Aermet100) workpiece is presented. Firstly, the stress distribution induces by thermal expansion was obtained base on the transient heat conduction equation and the thermal properties of Aermet100. All the calculations were based on the moving heat source solution which was modeled as a uniformly distributed, 2D heat source moving across the surface of a half-space, found in Carslaw and Jaeger. The results show that the near surface residual stress is predominantly tensile and that the magnitude of this stress increases with increasing heat flux values. Secondly, the plastic deformation caused by the abrasive grains of the wheel was simulated base on the grain-workpiece interaction. The chip formation process and the material removal mechanisms can be examined using the micro-scale approach. The results show that the residual stress induced by the grinding force itself is generally compressive which is smaller than the residual tensile stress induced by thermal stress. Therefore, the residual stress brought about by grinding operation is generally a tensile stress. This paper offers an insight into the mechanism understanding of thermal and mechanical residual stresses induced by surface grinding. Key words: grinding, residual stress, grain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.