A full spectrum of metabolic aberrations that are directly linked to colorectal cancer (CRC) at early curable stages is critical for developing and deploying molecular diagnostic and therapeutic approaches that will significantly improve patient survival. We have recently reported a urinary metabonomic profiling study on CRC subjects (n = 60) and health controls (n = 63), in which a panel of urinary metabolite markers was identified. Here, we report a second urinary metabonomic study on a larger cohort of CRC (n = 101) and healthy subjects (n = 103), using gas chromatography time-of-flight mass spectrometry and ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. Consistent with our previous findings, we observed a number of dysregulated metabolic pathways, such as glycolysis, TCA cycle, urea cycle, pyrimidine metabolism, tryptophan metabolism, polyamine metabolism, as well as gut microbial-host co-metabolism in CRC subjects. Our findings confirm distinct urinary metabolic footprints of CRC patients characterized by altered levels of metabolites derived from gut microbial-host co-metabolism. A panel of metabolite markers composed of citrate, hippurate, p-cresol, 2-aminobutyrate, myristate, putrescine, and kynurenate was selected, which was able to discriminate CRC subjects from their healthy counterparts. A receiver operating characteristic curve (ROC) analysis of these markers resulted in an area under the receiver operating characteristic curve (AUC) of 0.993 and 0.998 for the training set and the testing set, respectively. These potential metabolite markers provide a novel and promising molecular diagnostic approach for the early detection of CRC.
Recent studies suggest that biofluid-based metabonomics may identify metabolite markers promising for colorectal cancer (CRC) diagnosis. We report here a follow-up replication study, after a previous CRC metabonomics study, aiming to identify a distinct serum metabolic signature of CRC with diagnostic potential. Serum metabolites from newly diagnosed CRC patients (N = 101) and healthy subjects (N = 102) were profiled using gas chromatography time-of-flight mass spectrometry (GC–TOFMS) and ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS). Differential metabolites were identified with statistical tests of orthogonal partial least-squares-discriminant analysis (VIP > 1) and the Mann–Whitney U test (p < 0.05). With a total of 249 annotated serum metabolites, we were able to differentiate CRC patients from the healthy controls using an orthogonal partial least-squares-discriminant analysis (OPLS-DA) in a learning sample set of 62 CRC patients and 62 matched healthy controls. This established model was able to correctly assign the rest of the samples to the CRC or control groups in a validation set of 39 CRC patients and 40 healthy controls. Consistent with our findings from the previous study, we observed a distinct metabolic signature in CRC patients including tricarboxylic acid (TCA) cycle, urea cycle, glutamine, fatty acids, and gut flora metabolism. Our results demonstrated that a panel of serum metabolite markers is of great potential as a noninvasive diagnostic method for the detection of CRC.
DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.