In this work, we present a Ag@Au nanoprism-metal-organic framework-paper based glucose sensor for rapid, sensitive, single-use and quantitative glucose determination in human serum. To achieve painless measurement of glucose with a non-invasive detection methodology, this biosensor was further tested in human urine. In this approach, a new hybrid-Ag@Au nanoprism loaded in close proximity to micrometer sized coordination polymers as phosphorescent luminophores significantly enhanced the emission intensity due to metal-enhanced phosphorescence and worked as reaction sites to support more dissolved oxygen. Reports of enhanced phosphorescence intensity are relatively rare, especially at room temperature. The true enhancement factor of Ag@Au-phosphorescent metal-organic frameworks on paper was deduced to be 110-fold, making it a better optical type glucose meter. The results demonstrate the validity of the intensity enhancement effect of the excitation of the overlap of the emission band of a luminophore with the surface plasmon resonance band of Ag@Au nanoprisms. Ag@Au nanoprisms were used not only to improve the detection limit of glucose sensing but also to extend the glucose sensing range by enhancing the oxygen oxidation efficiency. The oxidation of glucose as glucose oxidase is accompanied by oxygen consumption, which increases the intensity of the phosphorescence emission. The turn-on type paper-based biosensor exhibits a rapid response (0.5 s), a low detection limit (0.038 mM), and a wide linear range (30 mM to 0.05 mM), as well as good anti-interference, long-term longevity and reproducibility. Finally, the biosensor was successfully applied to the determination of glucose in human serum and urine.
In this study, a turn‐on paper‐based optical analytical system with a rapid, sensitive and quantitative response for glucose was developed. The luminescence sensing material, crystalline iridium(III)‐Zn(II) coordination polymers, or Ir‐Zne, was grown electrochemically on stainless steel mesh and then deposited on filter paper. This sensing substrate was subsequently built up under glucose oxidase encapsulated in hydrogel and then immobilized on egg membrane with the layer‐by‐layer method. Once the glucose solution was dropped onto the paper, the oxygen content was depleted simultaneously with a concomitant increase in the phosphorescence of Ir‐Zne. The detection limit for glucose was 0.05 mM. The linear dynamic range for the determination of glucose was 0.05–8.0 mM with a correlation coefficient (R2) of 0.9956 (y=68.11 [glucose]−14.72). The response time was about 0.12 s, and the sample volume was less than 5 μL. The effects of mesh size, buffer concentration, pH, enzyme concentration, temperature, and interference, and the stability of the biosensor, have also been studied in detail. Finally, the biosensor was successfully applied to the determination of glucose in human serum.
Assemblies of four three-dimensional (3D) mixed-ligand coordination polymers (CPs) having formulas, {[Zn 2 (bdc) 2 (4-bpdh)]·C 2 H 5 OH·2H 2 O} n (1), [Zn(bdc)(4-bpdh)] n (2), {[Zn 2 (bdc) 2 (4-bpdh) 2 ]·(4-bpdh)} n (3), and {[Zn(bdc)(4-bpdh)]·C 2 H 5 OH} n (4) (bdc 2− = dianion of 1,4-benzenedicarboxylic acid, 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) have been synthesized and structurally characterized by single-crystal X-ray diffraction method. Structural determination reveals that the coordination numbers (geometry) of Zn(II) ions in 1, 2, 3, and 4 are five (distorted square-pyramidal (SP)), six (distorted octahedral (O h )), five (trigonal-bipyramidal (TBP)), and four (tetrahedral (T d )), respectively, and are bridged by 4-bpdh with bis-monodentate coordination mode and bdc 2− ligands with bis-bidentate in 1, chelating/bidentate in 2, bis-monodentate and bis-bidentate in 3, and bis-monodentate in 4, to generate two-fold interpenetrating 3D cube-like metal-organic framework (MOF) with pcu topology, non-interpenetrating 3D MOF, two-fold interpenetrating 3D rectangular-box-like MOF with pcu topology and five-fold interpenetrating diamondoid-like MOF with dia topology, respectively. These different intriguing architectures indicate that the coordination numbers and geometries of Zn(II) ions, coordination modes of bdc 2− ligand, and guest molecules play important roles in the construction of MOFs and the formation of the structural topologies and interpenetrations. Thermal stabilities, and photoluminescence study of 1-4 were also studied in detail. The complexes exhibit ligands based photoluminescence properties at room temperature.
A paper-based method with selectivity and a wider linear range for the detection of l-Cys in serum using DTNB-modified Ag nanoprisms (AgP-DTNB).
Infrared spectra of solid trifluoroiodometharie, CFsI, at ternprratures between 12 and 125 K in both the lattice anti internal mode regions arc presented and discussed. A reversible phase transition at (115 * 3 ) K is confirrned. The upper phase exhibits broad spectral features, characteristic of a disordered or highly anharmonic crystal. At 12 K, thc spectra are typical of an ordcrcd harmonic molecxlar crystal, and are compatible with a centrosymrnetric unit cell containing at least four nioleculcs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.