Background: The role of specific IgE (sIgE) against Der p 1 and Der p 2 in Chinese patients with house dust mite (HDM) allergy has not yet been well investigated. Methods: Onehundred patients were enrolled, based on sensitization and doctor-diagnosed allergy to HDM. Questionnaires were administered to document demographic and clinical characteristics. Serum IgE reactivity to Dermatophagoides pteronyssinus (Dp) extract, Der p 1, Der p 2 and Der p 10 was measured by ImmunoCAP. Results: Almost all patients were sensitized to Der p 1 (95%) and Der p 2 (93%), with both allergens together being largely responsible for the total anti-HDM IgE response. No evidence for a significant role of Der p 10 was found. Overall, IgE responses to HDM and its 2 major allergens were higher in children than in adults in this cross-sectional study. With increasing age, IgE responses to Der p 2 become more important. A positive correlation was observed between the reaction of sIgE against Dp, Der p 1 and Der p 2 and the number of organs (including the eyes, nose, lungs and skin) that were affected in patients. Conclusions: In China, Der p 1 and Der p 2 are the dominant allergens in patients with HDM allergy. The relative importance of Der p 1 and Der p 2 changes with age, in favor of Der p 2. Overall, sIgE titers were positively associated with the number of organs affected.
Group 1 allergen from Dermatophagoid pteronyssinus (Der p 1) belongs to the papain-like cysteine protease family and is a major cause of allergic rhinitis and asthma. An anti-Der p 1 monoclonal antibody, mAb W108, was selected and isolated from Der p-specific IgG2b-producing hybridoma clones. Two-dimensional electrophoresis and immunoblotting showed that mAb W108 reacted with four components of Der p extracts with a molecular mass of 35 kDa and pI values varying from 4 to 6; it also reacted with IgE antibodies in the sera of Der p-sensitive patients. In the competitive assay and using azocasein as a substrate, we found that mAb W108 inhibited not only the binding of Der p 1, but also its cysteine protease activity in a dose-dependent manner. The two peptide segments of Der p 1 identified by mAb W108 (aa 151-197 and 286-320) were parts of inter-connecting loops located in the substrate-binding cleft and on the surface of the domain comprising mainly β-sheets. From the predicted interaction between the amino acid sequence in the CDR3 of mAb W108 and Der p 1-binding epitopes, the possible binding sites for mAb W108 to Der p 1 may sterically hinder the IgE epitope and the active site of cysteine protease activity. Administration of mAb W108 in the Der p-sensitized murine model of asthma alleviated allergen-induced airway inflammation and the Th2 cytokine immune response, suggesting its therapeutic potential. These findings can provide new insights into understanding IgE-mediated disease and the design of modified allergen vaccines for future allergen-specific immunotherapy.
Virus inactivator can inactivate cell-free virions without relying on their replication cycle, potentially reducing the impact of viral infection on cells. Previously, we successfully constructed a HIV-1 protein inactivator, 2DLT, by conjugating the D1D2 region of CD4 to the fusion inhibitor T1144 via a 35-amino acid linker. Therefore, it targets both the CD4 binding site in gp120 and NHR region in gp41. Considering that small-molecule agents have the advantages of fast production, low cost, good stability, and oral availability, we herein report the design of a new small-molecule HIV-1 inactivator, FD028, by conjugating FD016 (an analog of NBD-556, a gp120-CD4 binding inhibitor) with FD017 (an analog of 11d, an HIV-1 fusion inhibitor). The results showed that FD028 inactivated cell-free virions at a moderate nanomolar concentration by targeting both HIV-1 gp120 and gp41. Moreover, FD028 has broad-spectrum inhibition and inactivation activity against HIV-1 resistant strains and primary isolates of different subtypes without significant cytotoxicity. Therefore, FD028 has potential for further development as an HIV-1 inactivator-based therapeutic.
Reverse transcriptase inhibitors (RTIs), including nucleoside RTIs (NRTIs) and non-nucleoside RTIs (NNRTIs), are critical antiretroviral drugs for the treatment of human immunodeficiency virus (HIV) infection. Emergence of multi-RTI resistance calls for the development of more potent therapeutics or regimens against RTI-resistant strains. Here, we demonstrated that combining azidothymidine (AZT) with a new NNRTIs under development, diarylpyridine (DAPA)-2e, diarylanilin (DAAN)-14h, or DAAN-15h, resulted in strong synergism against infection by divergent HIV-1 strains, including those resistant to NRTIs and NNRTIs, suggesting the potential for developing these novel NNRTIs as salvage therapy for HIV/acquired immune deficiency syndrome (AIDS) patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.