Eu 8 Ga 16 Ge 30 is the only clathrate known so far where the guest positions are fully occupied by a rare-earth element. Our investigations show that, in addition to the previously synthesized Eu 8 Ga 16 Ge 30 modification with clathrate-I structure, there exists a second modification with clathrate-VIII structure. Polycrystalline samples of both phases behave as local-moment ferromagnets with relatively low Curie temperatures ͑10.5 and 36 K͒. The charge-carrier concentrations are rather small ͑3.8 and 12.5ϫ10 20 cm Ϫ3 at 2 K͒ and, together with the low Curie temperatures, point to a semimetallic behavior. Both the specific heat and the thermal conductivity are consistent with the concept of guest atoms ''rattling'' in oversized host cages, leading to low thermal conductivities ͑''phonon glasses''͒. However, the electron mobilities are quite low, which, if intrinsic, would question the properties of an ''electron crystal'', commonly presumed in ''filled-cage'' materials. The dimensionless thermoelectric figure of merit reaches values of 0.01 at 100 K.
New germanium-platinum compounds with the filled-skutterudite crystal structure were synthesized. The crystal structure and composition were investigated by x-ray diffraction and microprobe analysis. Magnetic susceptibility, specific heat, and electrical resistivity measurements evidence superconductivity in LaPt4Ge12 and PrPt4Ge12 below 8.3 K. The parameters of the normal and superconducting states were established. Strong coupling and a crystal electric field singlet ground state is found for the Pr compound. Electronic structure calculations show a large density of states at the Fermi level. Similar behavior with lower Tc was observed for SrPt4Ge12 and BaPt4Ge12.
The single phase clathrate-I Ba(8)Ge(43)square(3) (space group Ia3d (no. 230), a = 21.307(1) A) was synthesized by quenching the melt between cold steel plates. Specimens for physical property measurements were characterized by microstructure analysis and X-ray diffraction on polycrystalline samples as well as single crystals. Transport properties including thermopower, electrical resistivity, thermal conductivity and specific heat were investigated in a temperature range of 2-673 K. The electrical resistivity exhibits a metal-like temperature dependence below 300 K turning into a semiconductor-like behaviour above 300 K. The analysis of the specific heat at low temperature indicates a finite density of states at the Fermi level, thus corroborating the metallic character below 300 K. The temperature dependence of the specific heat was modelled assuming Einstein-like localized vibrations of Ba atoms inside the cages of the Ge framework. A conventional crystal-like behaviour of the thermal conductivity with a low lattice contribution (kappa(l)(300 K) = 2.7 W m(-1) K(-1)) has been evidenced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.