Significance: Differential phase contrast (DPC) is a well-known imaging technique for phase imaging. However, simultaneously acquiring multidepth DPC images is a non-trivial task. We propose simultaneous multiplane DPC imaging using volume holographic microscopy (VHM). Aim: To design and implement a new configuration of DPC-VHM for multiplane imaging. Approach: The angularly multiplexed volume holographic gratings (AMVHGs) and the wavelength-coded volume holographic gratings (WC-VHGs) are used for this purpose. To obtain asymmetric illumination for DPC images, a dynamic illumination system is designed by modifying the regular Köhler illumination using a thin film transistor panel (TFT-panel). Results: Multidepth DPC images of standard resolution chart and biosamples were used to compare imaging performance with the corresponding bright-field images. An average contrast enhancement of around three times is observed for target resolution chart by DPC-VHM. Imaging performance of our system is studied by modulation transfer function analysis, which suggests that DPC-VHM not only suppresses the DC component but also enhances high-frequency information. Conclusions: Proposed DPC-VHM can acquire multidepth-resolved DPC images without axial scanning. The illumination part of the system is adjustable so that the system can be adapted to bright-field mode, phase contrast mode, and DPC mode by controlling the pattern on the TFTpanel.
Optical sectioning fluorescence microscopy provides high contrast images of volumetric samples and has been widely used for many biological applications. However, simultaneously acquiring multi-color fluorescence images require additional optical elements and devices, which are bulky, wavelength specific, and not cost-effective. In this paper, wavelength-coded volume holographic gratings (WC-VHGs) based optical sectioning fluorescence microscopy is proposed to simultaneously offer multi-color fluorescence images with fine out-of-focus background rejection. Due to wavelength degeneracy, multiplexed WC-VHGs are capable of acquiring multi-wavelength fluorescence images in a single shot, and displaying the laterally separated multi-wavelength images onto CCD. In our system optical sectioning capability is achieved through speckle illumination and HiLo imaging method. To demonstrate imaging characteristics of our system, dual-wavelength fluorescence images of both standard fluorescent microspheres and ex vivo mT/mG mice cardiac tissue are presented. Current results may find important applications in hyperspectral imaging for biomedical research.
A solution to the problem of principal stress distribution on the boundary of a circular hole and on a section of the model in semi-infinite plate during passage of the stress wave is presented. The solution was obtained experimentally by using a polyester material model, utilizing a double-pulsed Ruby Laser with energy/pulse of 0.25 joule. The stress pulse was applied by loading with reproducible falling weight of the pendulum. Utilizing an external event to initiate the firing order of Ruby Laser and using a different time delay, we have recorded, respectively, the isochromatic and isopachic fringes at one model using a Faraday Rotator.
We present a deep learning based HiLo optical sectioning imaging method, which utilizes a U-net model to perform image to image transformation for HiLo imaging. Our method can reduce the image acquisition time by half.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.