In the fields of medicine and health, traditional high-performance liquid chromatography or UV-visible spectrophotometry is generally used for substance quantification. However, over time, nuclear magnetic resonance spectroscopy (NMR) has gradually become more mature. Nuclear magnetic resonance spectroscopy has certain advantages in the quantitative analysis of substances, such as being nondestructive, having a high flux and short analysis time. Nuclear magnetic resonance spectroscopy has been included in the pharmacopoeiae of various countries. In this paper, the principle of nuclear magnetic resonance spectroscopy and the recent progress in the quantitative study of natural products by NMR are reviewed, and its application in the quantitative study of natural products is proposed. At the same time, the problems of using NMR alone to quantify natural products are summarized and corresponding suggestions are put forward.
Background: Monocarboxylate transports (MCTs), a family of solute carrier protein, play an important role in maintenance of cellular stability in tumor cells by mediating lactate exchange across membranes. The objective of this paper is to evaluate the knowledge structure, development trend, and research hotspot of MCTs research field systematically and comprehensively.Methods: Based on the 1526 publications from 2010 to 2020 retrieved from "Web of Science Core Collection" (WoSCC), we visually analyzed the MCTs research in terms of subject category, scientific collaboration network, keywords, and high-frequency literature using CiteSpace.Results: The number of publications exhibits an upward trend from 2010 to 2020 and the top 5 countries in the MCTs research were the United States, China, Japan, Germany, and England. Visser TJ was the most prolific author, while Halestrap AP was the most influential author with the highest citations. Analysis of the 7 cluster units from the co-cited references and keywords revealed that high expression of MCTs induced by oxidative stress and glycolysis was the pivotal point in the MCTs research field, while regulation of metabolism in tumor microenvironment, prognostic markers of cancer, and targeted inhibitors are the top 3 research frontiers topics.Conclusion: This study will help the new researcher to understand the MCTs related field, master the research frontier, and obtain valuable scientific information, thus providing directions for follow-up research. Abbreviations: CAF = cancer-associated fibroblasts, MCT1 = (aka SLC16A1) Isoform 1 in the MCT superfamily, MCT2 = (aka SLC16A7) Isoform 2 in the MCT superfamily, MCT4 = (aka SLC16A3) Isoform 4 in the MCT superfamily, MCT8 = (aka SLC16A2) Isoform 4 in the MCT superfamily, MCTs = monocarboxylate transports, TME = tumor microenvironment, WoSCC = Web of Science Core Collection.
Rauvolfia vomitoria is widely distributed in the tropical regions of Africa and Asia, and has been used in traditional folk medicine in China. Indole alkaloids were found to be major bioactive components, while the effects of diabetes mellitus on the pharmacokinetic parameters of the components have not been reflected in vivo. In this study, an efficient and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of five ingredients of R. vomitoria in rats. Detection was implemented in multiple‐reaction‐monitoring mode with an electrospray positive‐ionization source. Validation parameters were all in accordance with the current criterion. The established method was effectively employed to compare the pharmacokinetic behaviors of five alkaloids (reserpine, yohimbine, ajmaline, ajmalicine, and serpentine) between normal and type 2 diabetic rats. The single‐dose pharmacokinetic parameters of the five alkaloids were determined in normal and diabetic rats after oral administration of 100 and 200 mg/kg body weight. The results indicated that diabetes mellitus significantly altered the pharmacokinetic characteristics of yohimbine, ajmaline, and ajmalicine after oral administration in rats. This is an attempt to provide some evidence for clinicians that may serve as a guide for the use of antidiabetic medicine in clinical practice.
Diffusion-ordered spectroscopy (DOSY) is a powerful tool for investigating mixtures and identifying peaks of chemical components. However, similar diffusion coefficients of the components, particularly for complex mixtures that contain crowded resonances, limit resolution and restrict application of the DOSY technique. In this paper, matrix-assisted DOSY were used to explore whether the diffusion resolution of a complex model involving indole alkaloid mixtures can be realized. Furthermore, we investigated the influence of different factors on the separation effect. The results showed that the changes in diffusion coefficient differences were achieved more obviously when using sodium dodecyl sulfate (SDS) micelles as the matrix. In addition, we also found that increasing the concentration of SDS can improve the resolution of the DOSY spectrum. Finally, after investigating the influence factors and NMR conditions, we demonstrated the applications of the SDS-assisted DOSY on analyzing the total alkaloid extract of Alstonia Mairei, and the virtual separation of mixtures was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.