Caragana sinica (CS; family Legume) was used as a medicinal material to treat neuralgia and arthritis in folk remedies and has been shown to have antioxidant, neuroprotective, and anti-apoptotic effects. However, CS is unknown for its biological activities related to skin. The present study explored the effects of CS flower absolute (CSFAb) on skin repair responses, viz., wound healing and anti-wrinkle-related responses using keratinocytes. CSFAb was extracted using hexane, and its composition was analyzed by GC/MS. The effects of CSFAb on human keratinocytes (HaCaT cells) were evaluated using Boyden chamber, sprouting, water-soluble tetrazolium salt, 5-bromo-2′-deoxyuridine incorporation, ELISA, zymography, and immunoblotting assays. GC/MS detected 46 components in CSFAb. In addition, in HaCaT cells, CSFAb increased the proliferation, migration, and sprout outgrowth and the phosphorylation of ERK1/2, JNK, p38 MAPK, and AKT, and also increased collagen type I and IV synthesis, reduced TNF-α-increased MMP-2 and MMP-9 activities, and upregulated hyaluronic acid (HA) and HA synthase-2 levels. These effects of CSFAb on wound healing and anti-wrinkle-related responses in keratinocytes suggest its potential use for skin repair and care preparations.
Impatiens textori Miq. (ITM; family Balsaminaceae) is a traditional medicinal plant with many biological activities, which include anti-allergic, anti-inflammatory, and anti-pruritic properties. However, it remains to be determined whether ITM affects biological activities in the skin. Thus, we investigated the effects of ITM flower absolute (ITMFAb) extract on the biological activities of skin, especially those related to skin wound repair and whitening. ITMFAb was extracted with hexane, and its composition was determined through GC/MS. The biological activities of ITMFAb on HaCaT keratinocytes and B16BL6 melanoma cells were analyzed using a water-soluble tetrazolium salt, 5-bromo-2′-deoxyuridine incorporation, a Boyden chamber, an ELISA, a sprouting assay, and by immunoblotting. These analyses were performed in a range of ITMFAb concentrations that did not inhibit the viability of the cells (HaCaT, ≤400 µg/mL; B16BL6, ≤200 µg/m). Forty components were identified in ITMFAb. ITMFAb stimulated proliferation, migration, sprout outgrowth, and type I and IV collagen synthesis and upregulated the activations of ERK1/2, JNK, p38 MAPK, and AKT in HaCaT cells. In addition, ITMFAb attenuated the serum-induced proliferation of B16BL6 cells. ITMFAb inhibited melanin synthesis, tyrosinase activity, and expressions of MITF and tyrosinase in α-MSH-exposed B16BL6 cells. These findings indicate that ITMFAb has beneficial effects on wound repairing and whitening-linked responses in the skin and suggest the potential use of ITMFAb as a natural material for the development of skin wound repair and whitening agents.
Salix koreensis Anderss (SKA) has been used traditionally to treat inflammation, pain, and edema. SKA has anti-inflammatory and antioxidant effects, but no study has examined its effects on skin wound healing. Here, we aimed to investigate the effects of the absolute extracted from SKA flower (SKAFAb) on skin wound healing-associated responses in keratinocytes. SKAFAb was produced using a solvent extraction method and its chemical composition was analyzed by gas chromatography/mass spectrometry. The effects of SKAFAb on HaCaT cells (a human epidermal keratinocyte cell line) were investigated using a Boyden chamber and 5-bromo-2′-deoxyuridine incorporation, sprout outgrowth, immunoblotting, enzyme-linked immunosorbent, and water-soluble tetrazolium salt assays. Sixteen constituents were identified in SKAFAb. SKAFAb promoted HaCaT cell proliferation, migration, and type I and IV collagen productions. SKAFAb increased sprout outgrowth and increased the phosphorylations of serine/threonine-specific protein kinase (Akt), c-Jun NH2-terminal kinase, extracellular signal-regulated kinase1/2, and p38 mitogen-activated protein kinase (MAPK) in HaCaT cells. These results indicate that SKAFAb promotes keratinocyte proliferation and migration, probably by activating Akt and MAPK signaling pathways, and induces collagen synthesis in keratinocytes. SKAFAb may be a promising material for promoting skin wound healing.
Miscanthus sinensis var. purpurascens (MSP, flame grass) is found in Korea, Japan, and China, and its biological activities include anti‐cancer, detoxifying, vasodilatory, antipyretic, and diuretic effects. However, no study has investigated the effects of MSP on skin‐related biological activities. In this study, we explored the effects of the absolute extracted from the MSP flowers (MSPFAb) on skin wound healing‐ and whitening‐related responses in keratinocytes or melanocytes. MSPFAb contained 6 components and induced the proliferation, migration, and syntheses of type I and IV collagens in keratinocytes. MSPFAb also increased the phosphorylations of serine/threonine‐specific protein kinase, p38 mitogen‐activated protein kinase, and extracellular signal‐regulated kinase1/2 in keratinocytes. In addition, treatment with MSPFAb decreased serum‐induced melanoma cell proliferation and inhibited tyrosinase activity and melanin contents in α‐MSH‐stimulated melanoma cells. Taken together, this study indicates MSPFAb may promote wound healing‐ and whitening‐associated activities in dermal cells, and suggests that it has potential use as a wound healing and skin whitening agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.