Steel pipe columns are an important component in subway station construction and with stand stress state and internal force during the construction process. Based on the engineering background of Beijing subway, this paper introduces the geological conditions, station structure types, and internal force monitoring of steel pipe columns of 10 subway stations constructed by the PBA method. The field monitoring indicates that the greatest change in the internal force of the steel pipe column occurs during stage 1 (beam, primary support, and secondary lining buckle arch construction stage), no matter pile foundation station or strip foundation station, which accounts for about 60% to 65% of the total axial force. When the left and right spans are not synchronously arched or excavated, the steel pipe column is subjected to uneven forces and bears a large bending moment is produced. When the depth of overburden is between 7 m and 15 m, the internal force of the steel pipe changes positively correlated with the overburden depth. During the construction process, the internal force of the steel pipe varies widely in the silty sand stratum. Also, the steel pipe columns in stations affected by groundwater bears about twice of the axial force compared with other stations are not affected by groundwater. In addition, the construction period is also a factor that affects changes in internal forces. This research is conducive to update the database of the world subway projects and can serve as a practical reference for similar geological condition.
The shallow tunnelling method (STM) often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load. The complex support system composed of primary and temporary supports can ensure safety during tunnel construction. Based on the large section tunnel of Beijing Subway Line 12, the mechanical characteristics of support system by the double-side-drift method (DSDM) during excavation and demolition were analyzed through numerical simulation and monitoring. The study showed that the middle cave excavation was the most critical stage of the DSDM, during which the load on the supporting structure increased significantly. The temporary vertical support bore most of the new load during middle cave excavation. During the demolition stage, the load was redistributed, which caused arch settlement and section convergence. The removal of the temporary vertical support exerted the greatest impact in this process. The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated. Based on the mechanical characteristics of the support system, some engineering suggestions were proposed for large section tunnel construction. These research results can provide reference for the design and construction of similar large section tunnels.
The operation of a shield tunnel boring machine (TBM) in a high-strength hard rock stratum results in significant cutter damage, adversely affecting the thrust and torque of the cutter head. Therefore, it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock. In this paper, the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No. 8 was investigated using the discrete element method and theoretical analysis. The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC3D, and the rock-breaking degree, stress of the cutter, and rock-breaking specific energy were analyzed. The rock damage caused by the cutter in a specific section was divided into three stages: the advanced influence, crushing, and stabilizing stages. The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions. The disc cutter (wedge tooth cutter) has the highest rock-breaking efficiency at a cutter spacing of 100 mm (110 mm) and a penetration depth of 8 mm (10 mm), and the rock-breaking specific energy is 11.48 MJ/m3 (12.05 MJ/m3). Therefore, two types of cutters with different penetration depths or cutter spacing should be considered. The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield. The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
In order to effectively control the ground deformation and ground subsidence during subway construction, three-dimensional numerical simulation of soil deformation during shield tunnel construction is proposed. Based on a subway tunnel project, this essay firstly divides the shield construction process into several stages and analyzes the vertical displacement of soil in each stage. FLAC 3D was used for three-dimensional finite difference numerical simulation. By comparing the numerical simulation results with the field measured data, the soil settlement caused by shield tunnel excavation is studied deeply. The simulation results show that the maximum settlement value of the monitoring data is 0.59 mm, and the maximum settlement value of the numerical simulation is 0.82 mm, with a difference of 0.23 mm. The maximum value of uplift on both sides of the tunnel is 0.41 mm in monitoring data and 0.29 in numerical simulation, with a difference of 0.12 mm. The maximum settlement value of monitoring data is 2.59 mm, and the maximum settlement value of numerical simulation is 3.05 mm, with a difference of 0.46 mm. The maximum value of uplift on both sides of the tunnel is 0.32 mm in monitoring data and 1.89 mm in numerical simulation, with a difference of 1.57 mm. The settlement value of numerical simulation is slightly larger than that of monitoring data. Conclusion. The simulation can well simulate the state of soil uplift on both sides, and the width of settlement groove is in good agreement with the monitoring data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.