SummaryThis study demonstrated a role of plastid CK2 in ABA and heat-stress signalling. Its knockout led to reduced ABA sensitivity, thermotolerance, and expression of nuclear genes involved in these processes.
We have developed a novel concept for enzymatic control of plasmonic coupling as a surface enhanced Raman scattering (SERS) nanosensor for DNA demethylation. This nanosensor is constructed by decorating gold nanoparticles (AuNPs) with Raman reporters and hemimethylated DNA probes. Demethylation of DNA probes initiates a degradation reaction of the probes by methylation-sensitive endonuclease Bsh 1236I and single-strand selective exonuclease I. This destabilizes AuNPs and mediates the aggregation of AuNPs, generating a strong plasmonic coupling SERS signal in response to DNA demethylation. This nanosensor has the advantages in its high signal-to-noise ratio, superb specificity, and rapid, convenient, and reproducible detection with homogeneous, single-step operation. Thus, it provides a useful platform for detecting DNA demethylation and related molecular diagnostics and drug screening. This work is the first time that enzymatic degradation of DNA substrate probes has been utilized to induce aggregation of AuNPs such that reproducible, sensitive SERS signals can be achieved from biological recognition events. This enzymatic control mechanism for plasmonic coupling may create a new paradigm for the development of SERS nanosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.