Background: Coronavirus disease 2019 (COVID-19)–related critical illness and acute illness are associated with a risk of venous thromboembolism (VTE). Objective: These evidence-based guidelines of the American Society of Hematology (ASH) are intended to support patients, clinicians, and other health care professionals in decisions about the use of anticoagulation for thromboprophylaxis for patients with COVID-19–related critical illness and acute illness who do not have confirmed or suspected VTE. Methods: ASH formed a multidisciplinary guideline panel and applied strict management strategies to minimize potential bias from conflicts of interest. The panel included 3 patient representatives. The McMaster University GRADE Centre supported the guideline-development process, including performing systematic evidence reviews (up to 19 August 2020). The panel prioritized clinical questions and outcomes according to their importance for clinicians and patients. The panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, including GRADE Evidence-to-Decision frameworks, to assess evidence and make recommendations, which were subject to public comment. Results: The panel agreed on 2 recommendations. The panel issued conditional recommendations in favor of prophylactic-intensity anticoagulation over intermediate-intensity or therapeutic-intensity anticoagulation for patients with COVID-19–related critical illness or acute illness who do not have confirmed or suspected VTE. Conclusions: These recommendations were based on very low certainty in the evidence, underscoring the need for high-quality, randomized controlled trials comparing different intensities of anticoagulation. They will be updated using a living recommendation approach as new evidence becomes available.
BackgroundDespite the high cure rate of T cell acute lymphoblastic leukemia (T-ALL), drug resistance to chemotherapy remains a significant clinical problem. Bone marrow mesenchymal stem cells (MSCs) protect leukemic cells from chemotherapy, but the underlying mechanisms are poorly understood. In this study, we aimed to uncover the mechanism of MSC-induced chemoresistance in T-ALL cells, thus providing a promising clinical therapy target.MethodsCell viability was determined using the viability assay kit CCK-8. The mitochondrial ROS levels were detected using the fluorescent probe MitoSOX™ Red, and fluorescence intensity was measured by flow cytometry. In vitro, MSCs and Jurkat cells were cocultured. MSCs were labeled with green fluorescent protein (GFP), and Jurkat cells were labeled with the mitochondria-specific dye MitoTracker Red. Bidirectional mitochondrial transfer was detected by flow cytometry and confocal microscopy. The mechanism of mitochondria transfer was analyzed by inhibitor assays. Transcripts related to Jurkat cell/MSC adhesion in the coculture system were assessed by qRT-PCR. After treatment with a neutralizing antibody against a key adhesion molecule, mitochondria transfer from Jurkat cells to MSCs was again detected by flow cytometry and confocal microscopy. Finally, we verified our findings using human primary T-ALL cells cocultured with MSCs.ResultsChemotherapeutic drugs caused intracellular oxidative stress in Jurkat cells. Jurkat cells transfer mitochondria to MSCs but receive few mitochondria from MSCs, resulting in chemoresistance. This process of mitochondria transfer is mediated by tunneling nanotubes, which are protrusions that extend from the cell membrane. Moreover, we found that most Jurkat cells adhered to MSCs in the coculture system, which was mediated by the adhesion molecule ICAM-1. Treatment with a neutralizing antibody against ICAM-1 led to a decreased number of adhering Jurkat cells, decreased mitochondria transfer, and increased chemotherapy-induced cell death.ConclusionsWe show evidence that mitochondria transfer from Jurkat cells to MSCs, which is mediated by cell adhesion, may be a potential therapeutic target for T-ALL treatment.Electronic supplementary materialThe online version of this article (10.1186/s13045-018-0554-z) contains supplementary material, which is available to authorized users.
The exploitation of gas therapy platforms holds great promise as a “green” approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light-triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo antitumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage and to convert NIR light into ultraviolet light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light-triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied by the increase of intracellular reactive oxygen species levels and the damage of nuclear DNA. Moreover, efficient inhibition of tumor growth was achieved, associated with significantly prolonged survival of mice. Such NIR light-triggered SO2 therapy may provide an effective strategy to stimulate further development of synergistic cancer therapy platforms.
Focal adhesion kinase (FAK), a major cell adhesion-activated tyrosine kinase, has an important function in cell adhesion and migration. Here, we report a new signalling of FAK in regulating chromatin remodelling by its interaction with MBD2 (methyl CpG-binding protein 2), underlying FAK regulation of myogenin expression and muscle differentiation. FAK interacts with MBD2 in vitro, in myotubes, and in isolated muscle fibres. Such an interaction, increased in myotubes exposed to oxidative stress, enhances FAK nuclear localization. The nuclear FAK-MBD2 complexes alter heterochromatin reorganization and decrease MBD2 association with HDAC1 (histone deacetylase complex 1) and methyl CpG site in the myogenin promoter, thus, inducing myogenin expression. In line with this view are observations that blocking FAK nuclear localization by expressing dominant negative MBD2 or suppression of FAK expression by its miRNA in C2C12 cells attenuates myogenin induction and/or impairs muscle-terminal differentiation. Together, these results suggest an earlier unrecognized role of FAK in regulating chromatin remodelling that is important for myogenin expression and muscle-terminal differentiation, reveal a new mechanism of MBD2 regulation by FAK family tyrosine kinases, and provide a link between cell adhesion and chromatin remodelling.
Ultrasound (US) imaging is widely applied in hospital and clinical settings due to its non-invasiveness, controllability, and high tissue-penetrating ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.