A multiscale and multidirectional network named the Contourlet convolutional neural network (CCNN) is proposed for synthetic aperture radar (SAR) image despeckling. SAR image resolution is not higher than that of optical images. If the network depth is increased blindly, the SAR image detail information flow will become quite weak, resulting in severe vanishing/exploding gradients. In this paper, a multiscale and multidirectional convolutional neural network is constructed, in which a single-stream structure of convolutional layers is replaced with a multiple-stream structure to extract image features with multidirectional and multiscale properties, thus significantly improving the despeckling performance. With the help of the Contourlet, the CCNN is designed with multiple independent subnetworks to respectively capture abstract features of an image in a certain frequency and direction band. The CCNN can increase the number of convolutional layers by increasing the number of subnetworks, which makes the CCNN not only have enough convolutional layers to capture the SAR image features, but also overcome the problem of vanishing/exploding gradients caused by deepening the networks. Extensive quantitative and qualitative evaluations of synthetic and real SAR images show the superiority of our proposed method over the state-of-the-art speckle reduction method.
SUMMARYIn this paper, an efficient motion planning method is proposed for a six-legged robot walking on irregular terrain. The method provides the robot with fast-generated free-gait motions to traverse the terrain with medium irregularities. We first of all introduce our six-legged robot with legs in parallel mechanism. After that, we decompose the motion planning problem into two main steps: first is the foothold selection based on a local footstep cost map, in which both terrain features and the robot mobility are considered; second is a whole-body configuration planner which casts the problem into a general convex optimization problem. Such decomposition reduces the complexity of the motion planning problem. Along with the two-step planner, discussions are also given in terms of the robot-environmental relationship, convexity of constraints and robot rotation integration. Both simulations and experiments are carried out on typical irregular terrains. The results demonstrate effectiveness of the planning method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.