Direct formation of high-quality and wafer scale graphene thin layers on insulating gate dielectrics such as SiO(2) is emergent for graphene electronics using Si-wafer compatible fabrication. Here, we report that in a chemical vapor deposition process the carbon species dissociated on Cu surfaces not only result in graphene layers on top of the catalytic Cu thin films but also diffuse through Cu grain boundaries to the interface between Cu and underlying dielectrics. Optimization of the process parameters leads to a continuous and large-area graphene thin layers directly formed on top of the dielectrics. The bottom-gated transistor characteristics for the graphene films have shown quite comparable carrier mobility compared to the top-layer graphene. The proposed method allows us to achieve wafer-sized graphene on versatile insulating substrates without the need of graphene transfer.
High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS2 devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS2 devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS2 strain/force sensor built using a monolayer MoS2 triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS2 piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical–electronic nanodevices.
Immunoglobulin (Ig) somatic hypermutation (SHM) critically underlies the generation of high-affinity antibodies. Mutations can be introduced by error-prone polymerases such as polymerase f (Rev3), a mispair extender, and polymerase g, a mispair inserter with a preference for dA/dT, while repairing DNA lesions initiated by AIDmediated deamination of dC to yield dU:dG mismatches. The partial impairment of SHM observed in the absence of these polymerases led us to hypothesize a main role for another translesion DNA polymerase. Here, we show that deletion in C57BL/6J mice of the translesion polymerase h, which possesses a dual nucleotide mispair inserter-extender function, results in greater than 60% decrease of mutations in antigen-selected V186.2DJ H transcripts and greater than 80% decrease in mutations in the Ig H chain intronic J H 4-iEl sequence, together with significant alterations in the spectrum of the residual mutations. Thus, polymerase h plays a dominant role in SHM, possibly by introducing mismatches while bypassing abasic sites generated by UDG-mediated deglycosylation of AID-effected dU, by extending DNA past such abasic sites and by synthesizing DNA during dU:dG mismatch repair.
The emission spectra of Bi3+ and Mn4+ co-doped Ca3Al4ZnO10 phosphors match well with the absorption spectra of plant pigments for indoor plant growth lighting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.