The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, owering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed thatthe nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate ethylene signaling via various molecular mechanisms. These observations signi cantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed thatthe nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.