Abstract:In order to correctly predict and evaluate the response of wave energy converters (WECs), an accurate representation of wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques and applies a methodology to estimate the naturally available and technically recoverable resource in a given deployment site. The methodology was initially developed by the Electric Power Research Institute (EPRI), which uses a modified gamma spectrum to interpret sea state hindcast parameter data produced by National Oceanic and Atmospheric Administration's (NOAA's) WaveWatch III. This gamma spectrum is dependent on the calibration of two variables relating to the spectral width parameter and spectral peakedness parameter. In this study, this methodology was revised by the authors to increase its accuracy in formulating wavelength. The revised methodology shows how to assess a given geographic area's wave resource based on its wave power density and total annual wave energy flux.
To broaden the absorption spectrum of cells, enhance the cell stability, and avoid high costs, a novel perovskite solar cell (PSC) with the structure of fluorine-doped tin oxide (FTO)/ZnO/CsPbI3/FAPbI3/CuSCN/Au is designed using the solar cell capacitance simulator (SCAPS) software. The simulation results indicate that the CsPbI3/FAPbI3 heterojunction PSC has higher quantum efficiency (QE) characteristics than the single-junction CsPbI3-based PSC, and it outputs a higher short-circuit current density (Jsc) and power conversion efficiency (PCE). In order to optimize the device performance, several critical device parameters, including the thickness and defect density of both the CsPbI3 and FAPbI3 layers, the work function of the contact electrodes, and the operating temperature are systematically investigated. Through the optimum analysis, the thicknesses of CsPbI3 and FAPbI3 are optimized to be 100 and 700 nm, respectively, so that the cell could absorb photons more sufficiently without an excessively high recombination rate, and the cell achieved the highest PCE. The defect densities of CsPbI3 and FAPbI3 are set to 1012 cm−3 to effectively avoid the excessive carrier recombination centering on the cell to increase the carrier lifetime. Additionally, we found that when the work function of the metal back electrode is greater than 4.8 eV and FTO with a work function of 4.4 eV is selected as the front electrode, the excessively high Schottky barrier could be avoided and the collection of photogenerated carriers could be promoted. In addition, the operating temperature is proportional to the carrier recombination rate, and an excessively high temperature could inhibit Voc. After implementing the optimized parameters, the cell performance of the studied solar cell was improved. Its PCE reaches 28.75%, which is higher than most of existing solar cells. Moreover, the open circuit voltage (Voc), Jsc, and PCE are increased by 17%, 9.5%, and 25.1%, respectively. The results of this paper provide a methodology and approach for the construction of high-efficiency heterojunction PSCs.
Although perovskite solar cells have achieved excellent photoelectric conversion efficiencies, there are still some shortcomings, such as defects inside and at the interface as well as energy level dislocation, which may lead to non-radiative recombination and reduce stability. Therefore, in this study, a double electron transport layer (ETL) structure of FTO/TiO2/ZnO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD is investigated and compared with single ETL structures of FTO/TiO2/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD and FTO/ZnO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD using the SCAPS-1D simulation software, with special attention paid to the defect density in the perovskite active layer, defect density at the interface between the ETL and the perovskite active layer, and temperature. Simulation results reveal that the proposed double ETL structure could effectively reduce the energy level dislocation and inhibit the non-radiative recombination. The increases in the defect density in the perovskite active layer, the defect density at the interface between the ETL and the perovskite active layer, and the temperature all facilitate carrier recombination. Compared with the single ETL structure, the double ETL structure has a higher tolerance for defect density and temperature. The simulation outcomes also confirm the possibility of preparing a stable perovskite solar cell.
Zero-backlash high precision roller enveloping reducers (ZHPRER) possess a wide array of potential applications in the field of industrial robot because of their high precision and efficiency. This paper presents a pilot study to verify the applicability of this type of reducers in industrial robots. An industrial robot was designed, whose joint reducers were the roller enveloping reducers. A dynamic model for this robot which accounts for the dynamic responses of the reducers was also established using multibody dynamics. This dynamic model was then used for analyzing the dynamic behavior of the joint reducers and the body of the robot under different operating conditions. Simulation results yielded from the developed model were verified by comparing them with the data obtained from experiments. The present study for the first time confirms the evident advantages of ZHPRER for industrial robotic applications. Meanwhile, the proposed dynamic model for the industrial robot provides theoretical support for the subsequent design of error compensation control.
A process of modeling and reconstructing human head injuries involved in traffic crashes based on ABAQUS/Explicit is presented in this paper. A high-fidelity finite element (FE) model previously developed by the authors is employed to simulate a real accident case that led to head injury. The most probable head impact position informed by CT images is used for the FE modeling and simulation since the head impact position is critical for accident reconstruction and future analysis of accidents that involve human head injuries. Critical von Mises stress on the skull surface of the head model is chosen as the evaluation criterion for the head injury and FE simulations on 60 cases with various human head—concrete ground impact conditions (impact speeds and angles) were run to obtain those stress values. The FE simulation results are compared with the CT images to determine the minimum speed that will cause skull fracture and the corresponding contact angle at that speed. Our study shows that the minimum speed that would cause skull fracture is 3.5 m/s when the contact angle between the occipital position of the injured head and the ground is about 30°. Effects of the impact speed and the contact angle on the maximum von Mises stress of the head model are revealed from the simulations. The method presented in this paper will help forensic pathologists to examine the head impact injuries and find out the real reasons that lead to those injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.