Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer-bilayer graphene (tMBG) have shown the existence of correlated states and topological states in this system. However, the direct observations of the band structures and the corresponding spatial distributions are still not sufficient. Here we show that the distributions of flat bands in tMBG hosts two different modes by scanning tunneling microscopy and spectroscopy. By tuning our tMBG device from the empty filling state to the full filling state through the back gate, we observe that the distributions of two flat bands develops from localized mode to delocalized mode. This gate-controlled flat band wavefunction polarization is unique to the tMBG system. Our work suggests that tMBG is promising to simulate both twisted bilayer graphene (TBG) and twisted double bilayer graphene (tDBG) and would be an ideal platform to explore novel moiré physics.
Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.