Ideal microrobots are on the millimeter-scale with integrated actuators, power sources, sensors, and controllers. Numerous researchers are inspired by insects for the mechanical or electrical design of microrobots. Previously, the authors proposed and demonstrated microrobots that can replicate the tripod gait locomotion of an ant, the legs of which were actuated by shape memory alloy (SMA) actuators. The SMA provided a large deformation and force, but the power consumed by actuating a single leg reached as high as 94 mW. This paper discusses a silicon electrostatic inchworm motor chip to move a robot leg with low energy consumption using a small power source. The inchworm motor chip was actuated by electrostatic motors. The power consumption was as low as 1.0 mW, in contrast with SMA actuators. The reciprocal motion of the inchworm motor chip is powered by silicon photovoltaic cells. The results show that the 7.5 mm 2 photovoltaic cells could produce 60 V to actuate the inchworm motor chip, and the generated force is enough to move the leg of the microrobot. Thus, we demonstrated the actuation of a microrobot leg using an electrostatic inchworm motor chip, which is the first reported instance of an electrostatic motor driving an off-chip structure.
Abstract. We propose a gate-array style easy configuration method for voltage photovoltaic cell for rapid prototyping of on-chip IoT system. Using the same design chips fabricated by standard CMOS process and only changing the mask pattern for post processes, we successfully achieved two type chips: one generates 68 V open circuit voltage output photovoltaic cell and the other does 10 times higher short circuit current than it with 5.4 V open circuit voltage output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.