We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and the W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
[5-(5,6-Dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl]methanol, also called F3-A, has been isolated from hexose-lysine Maillard reaction (MR) models. Here we report on optimized conditions for the recovery of F3-A and concentrations found in bread. Recovery of F3-A was best achieved when samples were extracted with dichloromethane (DCM) at a solvent to sample ratio of 2:1 (v/v) after adjustment of the pH to 12. The amount of F3-A in whole wheat bread was significantly (P < 0.05) higher than that in white bread; bread crust contained a significantly (P < 0.05) higher amount of F3-A (0.9-7.8 μg/100 g) than the bread crumb (not detectable-3.5 μg/100 g); and toasting increased F3-A concentration with a range of not detectable to 6.0 μg/100 g in the control bread and 4.0 and 17.7 μg/100 g in the dark-toasted white sandwich bread and 100% whole wheat sandwich bread, respectively. The in vitro permeability of F3-A was measured using Caco-2 cell monolayer. The apparent permeability coefficient (P) of F3-A is (6.01 ± 0.35) × 10 cm/s, which is similar to that of propranolol, a highly passive transcellular absorbed drug. In conclusion, the concentration of F3-A recovered in bread varies with the type of bread and degree of toasting, and F3-A is bioavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.