Electrospun polyacrylonitrile (PAN) nanofiber membrane was functionalized with chitosan and proteins for use in the treatment of dye-containing wastewater. The PAN nanofiber membrane was subjected to alkaline hydrolysis, before being grafted with chitosan and subsequently the proteins from chicken egg white. The resultant nanofiber membrane (P-COOH-CS-CEW) was comprehensively characterized using thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The efficiency of P-COOH-CS-CEW in removing cationic dye toluidine blue O (TBO) and anionic dye acid orange 7 (AO7) in aqueous solution was evaluated. Based on the performance of model fitting, Langmuir and pseudo-second-order kinetic model could be used to describe the performance of P-COOH-CS-CEW in the removal of TBO (pH 10) and AO7 (pH 2) from the dye solutions. The adsorbed TBO and AO7 dyes can be completely desorbed by an elution solution made of 50% (v/v) ethanol and 1 M sodium chloride. After five consecutive adsorption-desorption cycles, the efficiency of dye removal by P-COOH-CS-CEW was maintained above 97%.
Intestinal ischaemia‐reperfusion (I/R) injury can result in acute lung injury due to ischaemia and hypoxia. Dexmedetomidine (Dex), a highly selective alpha2‐noradrenergic receptor (α2AR) agonist used in anaesthesia, is reported to regulate inflammation in organs. This study aimed to investigate the role and mechanism of Dex in lung injury caused by intestinal I/R. After establishing a rat model of intestinal I/R, we measured the wet‐to‐dry specific gravity of rat lungs upon treatments with Dex, SB239063 and the α2AR antagonist Atipamezole. Moreover, injury scoring and histopathological studies of lung tissues were performed, followed by ELISA detection on tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐1β and IL‐6 expression. Correlation of Caveolin‐1 (Cav‐1) protein expression with p38, p‐p38, p‐p65 and p65 in rat lung tissues was analysed, and the degree of cell apoptosis in lung tissues after intestinal I/R injury was detected by TUNEL assay. The lung injury induced by intestinal I/R was a dynamic process. Moreover, Dex had protective effects against lung injury by mediating the expression of Cal‐1 and α2A‐AR. Specifically, Dex promoted Cav‐1 expression via α2A‐AR activation and mitigated intestinal I/R‐induced lung injury, even in the presence of Atipamezole. The protective effect of Dex on intestinal I/R‐induced lung injury was also closely related to α2A‐AR/p38 mitogen‐activated protein kinases/nuclear factor‐kappaB (MAPK/NF‐κB) pathway. Dex can alleviate pulmonary inflammation after in intestinal I/R by promoting Cav‐1 to inhibit the activation of p38 and NF‐κB. In conclusion, Dex can reduce pulmonary inflammatory response even after receiving threats from both intestinal I/R injury and Atipamezole.
A low‐level metallic lithium thermal prelithiation strategy has been developed for boosting the performance of SiO anode materials with aqueous slurry processability. This facile prelithiation method can alter the phase and crystalline size of lithium silicates by controlling the parameters such as lithium contents and processing temperatures. The prelithiated graphene‐SiO composite anode material thus obtained under the optimized condition offers a high reversible capacity of 1062 mAh g−1 and the initial Coulombic efficiency of 80.8 %. Additionally, both the cycle life and cycling Coulombic efficiency are extremely stable, preserving over 90.3 % of the capacity after 200 cycles and more than 99.7 % of the efficiency on average during cycling. The significantly enhanced battery performance of the prelithiated SiO anode materials is owing to the size control of crystal silicon and Li2SiO3 phases. The existence of Li2Si2O5 and suppression of Li4SiO4 formation also guarantee homogeneous prelithiation results. This facile low‐level prelithiation approach is remarkably effective to improve the initial Coulombic efficiency for commercial SiO anode materials and simultaneously maintain superior reversible capacity, cycle life, cycling efficiency, and aqueous slurry processability.
Based on Ctrip’s ‘tourism digital footprint’, the spatial pattern of tourism flows in the Chengdu–Chongqing Economic Circle from 2018 to 2021 is explored, social network analysis and spatial visualisation of tourism information data are conducted, and factors affecting the network structure of tourism flows are analysed using linear weighted regression methods. The results show that tourism flows in the Chengdu–Chongqing Economic Circle show a significant ‘dual core’ polarisation effect. At the end of 2019, as a turning point, the density value of the tourism flow network shows an irregular inverted ‘U’ distribution. Kuanzhai Alley, Hong Ya Dong and Chunxi Road have irreplaceable competitive advantages in the tourism flow network. The density of highways, the number of star-rated hotels and the regional GDP per capita are positively correlated with the effective size of the structural hole of the administrative unit. Finally, based on the research results, countermeasures are proposed to optimise the tourism development of the Chengdu–Chongqing Economic Circle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.