The effect of friction on evolution of the microstructure and texture during hot rolling in the ferrite region was studied with secondary electromicroscopy (SEM), X-ray diffractometer, and FEM simulation. The friction between a roll and a steel sheet surface leads to the formation of notable through-thickness texture gradients. The finite element method (FEM) simulation shows that the large friction coefficient between a roll and sample results in a pronounced variation of _ " 13 (shear strain rate) and large e 13 /e 11 value which accounts for strong {110}<001> texture components and weak g-fiber components at rolled sheet surface; whereas the friction condition do not exert notable effect on texture formation at the sheet center.
The failure of a hydraulic system will affect the shifting quality and driving safety of a CVT tractor. In order to reveal the response of the tractor under different hydraulic system failures without destroying the transmission, the following methods are proposed in this paper: firstly, building the simulation model of CVT; secondly, building a test bench to test and verify the transmission model to ensure that the simulation model can accurately predict the response of CVT under different clutch oil pressures; thirdly, obtaining the fault oil pressure data without starting the engine and taking the data of fault oil pressure as the input variable of the simulation model; finally, obtaining the response of the CVT tractor under different hydraulic system failures by simulation. It is found that the damage of the seal ring inside the rotary joint has little effect on shifting quality; oil way block can lead to greater shift impact; when seal ring damage and oil way block occur together, the clutch cannot reach the minimum working pressure; clutch piston jamming and oil leak can cause power interruption of the tractor. The results show that it is feasible to study the response of CVT in fault mode by simulation.
Tractors equipped with hydro-mechanical transmissions (HMTs) typically deliver excellent fuel-saving performance but are expensive. To improve the fuel economy of cheaper tractors, the authors of this study have designed an HMT for a tractor that uses a simple, single planetary gear to merge the power and analyze its consumption of energy and fuel. First, we introduce the principle of transmission of the HMT and formulate a model to calculate its speed, torque, and efficiency. Second, we analyze the parasitic power of the HMT and simulate its characteristics of efficiency. Finally, we compare the efficiency of transmission and fuel consumption of HMTs with a single planetary gear and Simpson planetary gears. The results showed that parasitic power was obtained when the displacement of the variable pump was negative and the maximum ratio of hydrostatic power in each range was 45–46%. The highest efficiency of the proposed HMT in ranges RL (low range) and RH (high range) were 87% and 89%, respectively. It has a simpler structure than the HMT with Simpson planetary gears and consumes lower amounts of energy and fuel. These attributes make it suitable for use as a transmission system for large- and medium-power tractors with a continuously variable transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.